

Alex Smith

with Etienne Burtin, Jiamin Hou, Richard Neveux, Arnaud de Mattia + eBOSS QGC group

> Colloque Dark Energy 15 Oct 2019

Overview

- eBOSS DR16 QSO sample
- QSO mock challenge:
 - Non-blind mocks
 - Blind mocks
 - Results
- Averaging over lines of sight
 - Correlation function uncertainties
 - Growth rate uncertainties
- Conclusions

QSO mock challenge: *arXiv:2007.09003* Line of sight: *arXiv:2007.11417*

eBOSS DR16 QSO Sample

- DR16: ~350,000 QSOs between
 0.8<z<2.2, covering ~4,000 sq deg
- Direct tracers of the matter density field
- Number doubled compared to DR14
- Clustering analysis: measure
 - f σ_8 , $\alpha_{\scriptscriptstyle \parallel}$, $\alpha_{\scriptscriptstyle \perp}$
- Mock challenge:
 - Validate RSD models
 - Measure modelling systematic uncertainties
 - Aim: 3% for $f\sigma_8$ and 1% for $\alpha_{\scriptscriptstyle \rm I},\,\alpha_{\scriptscriptstyle \perp}$
 - Include effects of HOD, z uncertainties (Non-blind) fiducial cosmology (Blind)

Non-blind mocks

- Mocks constructed from OuterRim simulation (3 Gpc/h), WMAP7 cosmology
- Snapshot at z=1.433
- Populated using a wide range of HODs
- HODs tuned to match clustering and number density of data
- 100 realizations of each HOD (QSO duty cycle ~1%)
- Include effects of redshift smearing and catastrophic redshifts (from data)
- Analysis done using known OuterRim fiducial cosmology

Blind mocks

- Method of Mead & Peacock 2014 to rescale OuterRim cosmology
- Modify the halo catalogue (at redshift z) to mimic a simulation of a different cosmology (at redshift z')
- **First part**: global scaling of simulation coordinates (position, velocity, mass) to match $\sigma(M)$ of target cosmology
- Second part: use Zel'dovich approximation to match P(k) of target cosmology
- Rescaled to 8 new cosmologies (~5% shifts in cosmo params)
- Validated rescaling using CLPT model

Results

- Tested the models used in analysis of Hou (2020) and Neveux (2020)
- Non-blind results

RESPRESSO	RegPT
Hou (2020)	Neveux (2020)
Configuration space	Fourier space
TNS	TNS
RESPRESSO + Fitting function	RegPT (2 loop)

Non-blind systematics (from mocks which include redshift smearing and catastrophic redshifts)

	RESPRESSO	RegPT
$f\sigma_8$	0.008	0.008
α _ι	0.004	0.004
$lpha_{\perp}$	0.004	0.003

Results

- Blind results (using OR fiducial cosmology)
- Largest variations when large difference between fiducial and true cosmology

Blind systematics		
	RESPRESSO	RegPT
$f\sigma_8$	0.011	0.009
α _I	0.011	0.009
$lpha_{\perp}$	0.007	0.005

Diad avatament

Results

- Combine non-blind and blind results in quadrature
- Both models perform similarly well
- Take conservative modelling systematics for both models 2.8% in for 1.2% in $\alpha_{\scriptscriptstyle \parallel}$ 0.8% in $\alpha_{\scriptscriptstyle \perp}$
- ~30% of statistical error

	$f\sigma_8$	$lpha_\parallel$	$lpha_{ot}$
RegPT	0.0123	0.0098	0.0066
RESPRESSO	0.0131	0.0117	0.0078
Consensus	0.0106	0.0079	0.0048
BAO (Fourier)	-	0.0098	0.0055
BAO (Configuration)	-	0.0102	0.0067

Line of Sight

- For different choices of observer position, f σ_8 varied by as much as ~5%
- Surprising, given 3 Gpc/h box

- Related to amplitude of quadrupole
- Large variations in quadrupole seen on large scales in halo catalogue
- Due to velocities along different LOS
- Tiny variations in velocity distributions strongly amplified in correlation function quadrupole

Averaging over LOS

- Jackknife uncertainties from OuterRim halo catalogue
- When averaging over 3 orthogonal LOS, large gains in quadrupole uncertainty, much better than $\sqrt{1/3}$

Quadrupole anti-correlation

- Quadrupole measurements 1.0 3 LOS GRF+Kaiser for 2 LOS are anti-correlated All LOS 0.8 Gain in errors $(\sqrt{\rho^3 - \log})$ 6.0 For orthogonal LOS, no shot • noise, cross correlation (ρ^{xy}) only depends on $\beta = f/b$ EZmock DuterRin Averaging over 3 LOS, gain Monopole Quadrupole in errors 0.2 Hexadecapole $\rho^{3-\log} = \sqrt{2}$ 0.0^{L} 10^{0} 10^{1} В
- For OR halo catalogue, predicted gains consistent with measurements (on large scales)

Growth rate anti-correlation

- We performed a full-shape analysis on the P(k) measurements from a set of 300 eBOSS ELG EZmocks
- When averaging over 3 orthogonal LOS, an anti-correlation is seen in the growth rate
- Even when small scales included, a weak anti-correlation is still seen
- Very important to average over LOS with 1 mock (like in mock challenge)

	Large scales		
[0.0	$[03, 0.12]hMpc^{-1}$	$f \sigma_8$	
Cross- correlation Gain in uncertainties	ρ^{xy} Prediction $\sqrt{\rho^{3-\log}}$ Prediction	-0.244 ± 0.016 -0.274 0.414 ± 0.013 0.388	
Small scales			
$[0.03, 0.2]hMpc^{-1}$		$f \sigma_8$	
Cross- correlation Gain in uncertainties	ρ^{xy} Prediction $\sqrt{\rho^{3-\log}}$ Prediction	-0.076 ± 0.041 -0.035 0.532 ± 0.025 0.557	

Conclusions

- Validated and measured modelling systematics for RSD models used in QSO DR16 clustering analysis
- Using Blind and Non-blind mocks from OuterRim simulation
- Include effects of HOD, redshift uncertainties, cosmology
- Results affected by choice of line of sight
- Anti-correlation in quadrupole (and growth rate) measurements for 2 LOS
- Large gains in uncertainties when averaging over LOS
- Important to do this for eBOSS mock challenge (1 simulation)
- In future, can help constrain models while require fewer simulations