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1.1			Redshift	space	distortions	(RSD)
Galaxy redshift surveys map the universe by measuring 

redshift 

angular position

©SDSS

Observed galaxy distribution appears distorted 
= Redshift space distortions (RSD)

+ Doppler effect 
   (peculiar velocity)

Observed redshift

Cosmological redshift 
(Hubble flow)

Observed position (inferred from redshift) ≠ Actual position 

http://www2.yukawa.kyoto-u.ac.jp/~shohei.saga/
https://doi.org/10.1093/mnras/staa2232
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1.2			Classical	Doppler	effect

redshift space

real space

s = r +
1 + z

H(z)
(v · ẑ) ẑ

(special relativity, v ≪ 1)

Kaiser formula (Fourier space)

: linear growth ratef ⌘ d ln �L
d ln a

conservation law: continuity equation (linear):

Primary source of RSD: 
Doppler effect induced by peculiar velocity of galaxy

N. Kaiser (1987) 

http://www2.yukawa.kyoto-u.ac.jp/~shohei.saga/
https://doi.org/10.1093/mnras/staa2232
https://doi.org/10.1093/mnras/227.1.1
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1.3			Probe	of	gravity	theory

: linear growth ratef ⌘ d ln �L
d ln a

Linear growth rate depends on the gravity theory 
→ RSD can be a probe of gravity on cosmological scales
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1.4			General	relativistic	effects

+ Doppler effect 
   (peculiar velocity)

Cosmological redshift 
(Hubble flow)

+ gravitational redshift (Sachs-Wolfe) 
+ integrated Sachs-Wolfe 
+ Shapiro time delay 
+ gravitational lensing 
+ ...

Observed redshift
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2.1			Relativistic	RSD
How do relativistic effects imprint on redshift space?

A.Challinor and A.Lewis [1105.5292] 
C.Bonvin and R.Durrer [1105.5280] 
C.Bonvin et al. [1309.1321] 
J.Yoo [1409.3223], 
and many works

• gravitational redshift 
• Transverse Doppler

High-precision future experiments might be possible to detect 
➡ which is the unique signature of relativistic effects？

(weak field approx.)

Perturbed FLRW ds2 = [−(1 + 2Φ)dt2 + a2(1 − 2Ψ)dx2]
dkμ

dλ
+ Γμ

αβkαkβ = 0Solve the geodesic eq.

1 + z =
(kμuμ)S

(kμuμ)O
Define observed redshift including all effects

(Classical) Doppler effect
Relativistic effects

s = r+ 1 + z
H

(v ⋅ ̂r) ̂r

+ 1 + z
H (−Φ + 1

2 v2 − ∫
t0

t
( ·Φ + ·Ψ) dt′ ) ̂r − ∫

χ

0
(Ψ + Ψ)dχ′ ̂r − ∫

χ

0
(χ − χ′ )∇⊥(Φ + Ψ)dχ′ 

• Shapiro time delay 
• integrated Sachs-Wolfe 
• gravitational lensing

http://www2.yukawa.kyoto-u.ac.jp/~shohei.saga/
https://doi.org/10.1093/mnras/staa2232
http://arxiv.org/abs/1105.5292
http://arxiv.org/abs/1105.5280
http://arxiv.org/abs/1309.1321
http://arxiv.org/abs/1409.3223
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2.2			Linear	theory	of	relativistic	RSD

(1 + δ(S)(s)) d3s = (1 + δ(r)) d3rconservation law

(linear approximation)

(Classical) Doppler effect
Relativistic effects

s = r+ 1 + z
H

(v ⋅ ̂r) ̂r

+ 1 + z
H (−Φ + 1

2 v2 − ∫
t0

t
( ·Φ + ·Ψ) dt′ ) ̂r − ∫

χ

0
(Ψ + Ψ)dχ′ ̂r − ∫

χ

0
(χ − χ′ )∇⊥(Φ + Ψ)dχ′ 

c.f. Kaiser formula
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2.3			Dipole	anisotropies

ξ1 ∝ (b1 − b2)Dipole cross-correlation: ξ1 = 3
2 ∫

1

−1
dμ ξ(S)(s1, s2)

s ( = s2 − s1)

s2
s1

dθ

O

1

2
( = s1 + s2

2 )

Real space Redshift space Redshift space 
w/ relativistic effects
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3.1			N-body	simulations

• Storing potential data on light cone  
• Tracing back the light ray to the source by direct integration of 

geodesic equation 
• "Observed" position and redshift

Then, all possible relativistic effects are taking into account

M-A.Breton, Y.Rasera, A.Taruya, O.Lacombe, S.Saga [1803.04294]

Compute propagation of photons in perturbed universe

Using C++11 template metaprogramming (Reverdy, 2014)

Take action in the instanciation process

MPI parallelized + Multithreading

Raytracing characteristics

ds2
= 0 (photon)

d
2
x

–

dv2
+ �

–
—“

dx
—

dv

dx
“

dv
= 0

Backward integration starting from the observer today

RK4 integrator with 4 steps per cell

Michel-Andrès Breton (LUTH) presentation 25/05/2017 3 / 14

(2.625 h-1Mpc)3 
40963 DM particles 
(assumed Φ=Ψ)

RayGalGroupSims 
By Michel-Andres Breton and Yann Rasera
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https://doi.org/10.1093/mnras/staa2232
http://arxiv.org/abs/1803.04294
https://cosmo.obspm.fr/raygalgroupsims-relativistic-halo-catalogs/
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3.2			Measurements	in	RayGalGroupSims
16 Breton et al.

Figure 12. Dipole of the cross-correlation function between data H1600 and data H100, at small scales, for di↵erent perturbations of the
halo number count. This leads to: upper left panel only the contribution from gravitational potential was taken into account as a source
of RSD, upper right panel Doppler only, middle left panel transverse Doppler only, middle right panel ISW/RS only, bottom left panel
weak lensing only, and finally bottom right panel the residual for which we subtract all the previous e↵ects to the full dipole taking into
account all the e↵ects at once.

the dipole below 10 h
�1Mpc. It is therefore possible to probe

the potential outside groups and clusters using the dipole.
By subtracting the linear expectation for the Doppler con-
tribution it is in principle possible to probe the potential to
even larger radii. This is a path to explore in order to circum-

vent the disadvantages of standard probes of the potential,
usually relying on strong assumptions (such as hydrostatic
equilibrium) or being only sensitive to the projected poten-
tial (lensing). A simple spherical prediction allows to predict
the global trend of the dipole but not the exact value. More-
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Figure 13. Full dipole of the cross-correlation function between
data H1600 and data H100. The deviation from linear theory is
governed by the potential contribution and the “residual” (mostly
related to the coupling between potential and velocity terms). The
dipole is a sensitive probe of the potential well beyond the virial
radius of haloes.

over as we have seen the residual (i.e all the cross terms
and non-linearities of the mapping) is of the same order as
the gravitational potential contribution and should be taken
into account properly. At small scales the pairwise velocity
PDF is also highly non-Gaussian, leading to high peculiar
velocities and Finger-of-God e↵ect. Coupled to gravitational
potential and possibly wide-angle e↵ect we expect this to be
a non-negligible contribution to the dipole. To fully under-
stand and probe cosmology or modified theories of gravity at
these scales using the cross-correlation dipole we therefore
need a perturbation theory or streaming model which takes
into account more redshift perturbation terms and relaxes
the distant observer approximation. This will be the focus
of a future paper.

There are multiple possible extensions to this work. At
large Gpc scales current analysis are limited by the volume
of the simulation as well as gauge e↵ect. At smaller scales
the baryons as well as the finite resolution e↵ect might play
a role. Extension of this work in these two directions can
open interesting perspectives. When analysing future sur-
veys, it is also important to consider observational e↵ects.
One possibility would be to populate haloes with galaxies
and to incorporate e↵ects such as magnification bias, ab-
sorption by dust, redshift errors, alignment of galaxies, etc.
Another straight-forward extension is to explore the influ-
ence of cosmology, dark energy, dark matter and modified
gravity on the dipole of the halo cross-correlation to shed
light on the nature of the dark sector with future large scale
surveys.
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Figure 10. Dipole of the cross-correlation function normalised by the bias, at large scales, for di↵erent perturbations of the observed
halo number count. This leads to: upper left panel only the contribution from gravitational potential was taken into account as a source
of RSD, in black dashed line we have the prediction when accounting for leading terms in (H/k)2. Upper right panel Doppler only, middle
left panel transverse Doppler only, middle right panel ISW/RS only, bottom left panel weak lensing only, and finally bottom right panel
the residual where we subtract all the previous e↵ects to the full dipole taking into account all the e↵ects at once. In black we have the
averaged prediction using linear theory at first order in H/k.
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Figure 11. Full dipole of the cross-correlation function nor-
malised by the bias. The dipole is dominated by the Doppler
contribution.

highlighted by Zhao et al. (2013). However it was restricted
to the region r < 2 Rvir inside or close to the virial ra-
dius Rvir ⇠ 1 � 2 h

�1Mpc of the clusters. Interestingly, the
transverse-Doppler contribution to the dipole (middle-left)
is non-zero even at very large radii (r > 2 Rvir). It remains
positive of order ⇠1 ' 2�6⇥10�5 at radii 14 < r < 30 h

�1Mpc.
At smaller scales there is strong increase from ⇠1 = 2 ⇥ 10�4

at 14 h
�1Mpc to ⇠1 = 5⇥ 10�4 at 6 h

�1Mpc. The ratio to the
potential contribution to the dipole is of order �10 at this
scale.

The ISW contribution (middle right) and lensing contri-
bution (bottom left) are consistent with zero at small scales.
The size of the error bars provide an upper limit for the sig-
nal of ⇠1 < 5 ⇥ 10�5 for ISW and ⇠1 < 10�4 for lensing. It is
still in agreement with the linear prediction which is of the
same order of magnitude, however the fluctuations are too
important to measure the signal.

Surprisingly, the residual (bottom right) is of the same
order as the potential contribution (from ⇠ �10�4 at
30 h

�1Mpc to ⇠ �6 ⇥ 10�3 at 6 h
�1Mpc). This is an im-

portant result of this paper. It means that at these scales
and especially below 15 h

�1Mpc, one cannot add up all the
contributions one by one. On the contrary, there are some
important contributions involving both potential terms and
velocity terms together.

5.3.2 Total dipole

The total dipole at non-linear scales is presented Fig. 13.
It remains slightly positive of order ⇠1 ⇠ 1 ⇥ 10�3 above
15 h

�1Mpc. As shown in the previous section, this is related
to the velocity contribution which remains positive in this
region. At smaller scales, the potential contribution dom-
inates over the velocity contribution. The total dipole is
then falling down quickly to ⇠1 ⇠ �1 ⇥ 10�2 at 6 h

�1Mpc.
Moreover within our simulated survey of 8.34 (h

�1Gpc)3, er-
ror bars (mostly related to the fluctuations of the velocity
field) are smaller than the signal at this scale. The dipole
of the group-galaxy cross-correlation function is therefore a
good probe of the potential far outside of the group virial

radii. Interestingly, deviations from linear theory are mostly
governed by the potential and by the residual. The interpre-
tation of the dipole is therefore non-trivial because of cor-
relations between potential and velocity terms. However the
dipole carries important information about the potential.

5.3.3 Mass dependence of the contributions

So far, we have focused on the cross-correlation between
haloes of mass ⇠ 4.5 ⇥ 1013

h
�1M� and haloes of mass

⇠ 2.8 ⇥ 1012
h
�1M�. In Fig. 14, we investigate the halo

mass dependence of the main dipole contributions (velocity,
potential). The mass dependence on the residual is shown
in Appendix C. We explore various configurations by
cross-correlating all the di↵erent halo populations with
the lightest halo population. At large linear scales the
variation of the dipole is mostly governed by the bias
di↵erence between the two halo populations, however at
small non-linear scales the evolution of the dipole is less
trivial. The velocity contribution to the dipole does not
evolve strongly with halo mass. It stays bounded in the
range 0 < ⇠1 < 1 ⇥ 10�3. On the other hand, the potential
contribution becomes more negative at larger mass from
⇠1 ' �5 ⇥ 10�4 to ⇠1 ' �1 ⇥ 10�2 at 6 h

�1Mpc. It means
that for massive enough haloes the potential contribution
dominates over the velocity contribution for a wide range
of scales (as seen previously). However for haloes lighter
than ⇠ 1013

h
�1M� the velocity-contribution dominates.

The residual also departs from 0 at larger radii for heavier
haloes. Interestingly it is mostly following the potential
contribution.

The prediction of the potential e↵ect from Eq. (41) (as-
suming spherical symmetry) reproduces the trend at a qual-
itative level. However the potential contribution is overesti-
mated. Taking into account the dispersion around the poten-
tial deduced from spherical symmetry as in Eq. (38) should
improve the agreement with the measured dipole (Cai et al.
2017). Note that we have checked (see Appendix B) that
our conclusions still hold for a very di↵erent halo definition
(i.e. linking length b = 0.1). The main di↵erence is a slightly
better agreement with the spherical predictions for the po-
tential contribution to the dipole.

6 CONCLUSIONS

In this work we explored the galaxy clustering asymmetry
by looking at the dipole of the cross-correlation function be-
tween halo populations of di↵erent masses (from Milky-Way
size to galaxy-cluster size). We took into account all the rel-
evant e↵ects which contribute to the dipole, from lensing to
multiple redshift perturbation terms. At large scales we ob-
tain a good agreement between linear theory and our results.
At these scales the dipole can be used as a probe of velocity
field (and as a probe of gravity through the Euler equation).
However one has to consider a large enough survey to over-
come important real-space statistical fluctuations. It is also
important to take into account the light-cone e↵ect and to
accurately model the bias and its evolution.

At smaller scales we have seen deviation from linear
theory. Moreover the gravitational redshift e↵ect dominates
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Figure 12. Dipole of the cross-correlation function between data H1600 and data H100, at small scales, for di↵erent perturbations of the
halo number count. This leads to: upper left panel only the contribution from gravitational potential was taken into account as a source
of RSD, upper right panel Doppler only, middle left panel transverse Doppler only, middle right panel ISW/RS only, bottom left panel
weak lensing only, and finally bottom right panel the residual for which we subtract all the previous e↵ects to the full dipole taking into
account all the e↵ects at once.

the dipole below 10 h
�1Mpc. It is therefore possible to probe

the potential outside groups and clusters using the dipole.
By subtracting the linear expectation for the Doppler con-
tribution it is in principle possible to probe the potential to
even larger radii. This is a path to explore in order to circum-

vent the disadvantages of standard probes of the potential,
usually relying on strong assumptions (such as hydrostatic
equilibrium) or being only sensitive to the projected poten-
tial (lensing). A simple spherical prediction allows to predict
the global trend of the dipole but not the exact value. More-
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Figure 10. Dipole of the cross-correlation function normalised by the bias, at large scales, for di↵erent perturbations of the observed
halo number count. This leads to: upper left panel only the contribution from gravitational potential was taken into account as a source
of RSD, in black dashed line we have the prediction when accounting for leading terms in (H/k)2. Upper right panel Doppler only, middle
left panel transverse Doppler only, middle right panel ISW/RS only, bottom left panel weak lensing only, and finally bottom right panel
the residual where we subtract all the previous e↵ects to the full dipole taking into account all the e↵ects at once. In black we have the
averaged prediction using linear theory at first order in H/k.

MNRAS 000, 1–21 (2018)

Doppler Gravitational redshift

T.Doppler ISW

lensing All

Large scales Small scales
M-A.Breton, Y.Rasera, A.Taruya, O.Lacombe, S.Saga [1803.04294]

z=0.34z=0.34

Doppler Gravitational 
redshift

T.Doppler

ISW

lensing
All

http://www2.yukawa.kyoto-u.ac.jp/~shohei.saga/
https://doi.org/10.1093/mnras/staa2232
http://arxiv.org/abs/1803.04294


Shohei SagaRelativistic redshift-space distortions at quasi-linear scales

3.3			Short	summary

Based on RayGalGroupSims and/or linear theory...

c.f. Detection of relativistic effects?
S.Alam et al(2017)

large scales small scales

Doppler effect 
(Wide-angle effect)

Gravitational redshift 
(+ Doppler effect)Dominated by
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Method Zel'dovich approximation 
+ linear bias

1-loop Standard PT 
+ EFT like parameter 
+ nonlinear bias

We make a quasi-linear model taking into account both 
effects based on Lagrangian PT (Zel'dovich approx.)
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4.1			Quasi-linear	modelling

Doppler effect 
(wide-angle effect)

Relativistic effects

s = r+ 1 + z
H

(v ⋅ ̂r) ̂r + 1 + z
H (−Φ + 1
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( ·Φ + ·Ψ) dt′ ) ̂r − ∫
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0
(Ψ + Ψ)dχ′ ̂r − ∫

χ

0
(χ − χ′ )∇⊥(Φ + Ψ)dχ′ 

Pick up the dominant contributions 
✓ Doppler effect 
✓ Gravitational redshift effect
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Lagrangian PT (Zel'dovich approximation)

∇q ⋅ ΨZA(q, t) = − D+(t)δL(q)r = q + ΨZA(q, t)
 : Linear growth factorD+(t)
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4.2			Modelling	gravitational	potential

Φ should be modified by the gravitational potential of haloes

ΦL

ΦNL

∇2
xΦL(x) = 4πGa2ρ̄δL = − 4πGa2ρ̄(∇ ⋅ ΨZA)Φ = ΦL + ΦNL

Assumptions: ΦNL is a constant value determined by halo masses and redshifts

non-linear halo potential

linear potential (computed based on Zel'dovich approximation)

s = r+ 1 + z
H

(v ⋅ ̂r) ̂r − 1 + z
H

Φ
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4.3		Non-linear	halo	potential
Gravitational potential at the center of haloes is systematically deeper than 
linear potential

8 S. Saga et al.

Figure 5. Gravitational potential at the centre of mass of haloes
�halo vs linear potential �L, estimated from N -body simulation
for the halo population data_H100, data_H400, and data_H1600.
We show the linear fitting �halo = �L + �sim. Gray line indicates
�halo = �L.

correction to the linear gravitational potential is estimated
in N -body simulation.

[SS: Could you improve this paragraph (estima-
tion of �sim)?] After identifying the haloes at the redshift of
interest in N -body simulation, we measure the gravitational
potential at the centre of mass for tho halo denoted by �halo.
At the same time, we identify the composite particles of the
halo. Once dark matter particles in the halo are identified at
the time of interest, we can trace these dark matter parti-
cles back to the initial Lagrangian positions. We measure the
initial gravitational potential of these particles at the centre
of mass of these particles. Then, multiplying by D+(t)/a(t),
we obtain the linear halo potential at the time of interest,
denoted by �L. On the basis of this measurement, we ob-
tain �halo and �L for many haloes by using the snapshots of
N -body simulation with 5123 particles which is roughly the
same resolution as ⇤CDM RayGalGroupSims.

In Fig. 5, we show �halo-�L plane measured in N -body
simulation. As seen from Fig. 5, when �L > 0, the gravita-
tional potential at the centre of mass of haloes, �halo, tends
to follow the linear potential because the haloes are in less
dense regions with less non-linearities. On the other hand,
�halo does not coincide with �L when �L < 0. The discrep-
ancy between �halo and �L depends on the halo mass. Then,
averaging the non-linear correction, �halo = �L + �sim, over
all haloes in each dataset, we estimate the non-linear po-
tential, �sim for each population and redshift. Note that we
have examined the parametrization, �halo = ↵�L + �, for
which ↵ and � are the fitting parameters.

TODO[We confirmed that the predic-

tions of the dipole moment do not change

a lot. Therefore, what matters the most

to estimate the non-linear potential is the

additive constant potential term.]

In Fig. 6, we compare the estimated value, �sim, with
the analytical prediction based on NFW profile at various
redshifts and for halo populations. In both prediction and
measurement, the potential depth gets deeper as increasing
redshifts. However, we find a disagreement in the mass de-
pendence of the non-linear potential.

Figure 6. Predictions of the non-linear potential based on NFW
profile, �NFW, and N -body simulation, �sim.

For the light haloes, the non-linear potential based on
NFW profile is larger than the measured results, but for
the heavy haloes, this dependence shows an opposite trend.
In N -body simulation, since light haloes tend to be located
near massive haloes, the gravitational potential well becomes
deeper than NFW potential. Recalling that the non-linear
potential is given by �NL = �halo � �L, �halo estimated by
NFW profile would be underestimated for the light haloes.
For the heavy haloes, they tend to involve a substructure.
The halo potential at the centre of mass does not always
correspond to that at the deepest position for the halo, and
�halo would be underestimated in the simulation. Therefore,
the o↵set between the center of mass and minimum of the
halo potential might lead the disagreement in Fig. 6. In next
subsection, we will show the results of the dipole moment
estimated by both ways in the following subsection.

5.2 The dipole moment on large scales

First, we focus on the results of the dipole moment at large
scales, 20 h�1Mpc  s  150 h�1Mpc. This range is ex-
pected to be the linear regime and beginning of the deviation
from the linear theory.

In Fig. 7, we show the dipole moment for the Potential
only on large scales at various redshifts and for halo popu-
lations. As we mentioned at the beginning of this section,
the errorbars of the measured dipole moments by N -body
simulation at z = 0.9 (centre) and 1.1 (right) are larger than
that at z = 0.33 (left). Therefore, at first, we focus on the
results based on the dipole moment at z = 0.33.

At the linear regime, 60 h�1Mpc . s, all analytical pre-
dictions are in good agreement with the result of N -body
simulation. The dipole moment measured in N -body sim-
ulation starts to decrease at s ⇡ 60 h�1Mpc, and the de-
viation from linear theory simultaneously appears manifest.
On much smaller scales, s . 30 h�1Mpc, the dipole mo-
ment has a negative value on small scales. The predictions
based on Zel’dovich approximation with the non-linear po-
tential estimated well describes the behaviour of the dipole
moment in N -body simulation. Within the statistical error,
the predictions with the non-linear potential based on NFW
profile (orange line) and that by N -body simulation (green
line) are consistent with the results of simulation. Note that
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Figure 6. Predictions of the non-linear potential based on N -
body simulation (left) and NFW profile (right).

est potential generally di↵ers from the centre of mass for
aspherical haloes in simulations. This may result in the un-
derestimation of the non-perturbative contribution, �NL, es-
pecially giving an impact on the massive halo populations.
The third possibility may come from the halo mass definition
in N -body simulations. It is known that the mass defined by
the Friends-of-Friends (FoF) algorithm does not precisely co-
incide with that of haloes identified with the Spherical Over-
density finder (see e.g., Lukić et al. 2009; More et al. 2011).
Thus, the halo mass in simulations may di↵er from that of
the spherically symmetric NFW halo, and this can lead to
the bias in the potential-halo mass relation, especially for
massive haloes. Note that, in Appendix E, we check the de-
pendence of the halo definition on the non-linear potential by
using the di↵erent halo definition (i.e. smaller linking length
b = 0.1). The smaller linking length would lead to a slightly
better agreement with the predictions based on spherically
symmetric haloes.

For these reasons above, we will below present the quasi-
linear predictions, with the non-perturbative halo potential
estimated both from simulations and analytical model.

5.2 Dipole cross-correlation at large scales

Let us first look at the dipole cross-correlation at large scales.
Figs. 7 and 8 summarize the results of the comparison at
redshifts z = 0.33 (left), 0.9 (middle) and 1.1 (right), focus-
ing on the scales of 20 h�1Mpc  s  150 h�1Mpc. Here,
the cross-correlations between the halo subsample data_H100
and massive counterparts data_H800 and data_H1600 are par-
ticularly shown. Fig. 7 presents the results including the
gravitational redshift e↵ect, while Fig. 8 plots the results in-
cluding both the gravitational redshift and Doppler e↵ects.

Since the scales we are looking at mostly lies at the
linear regime, we do not see any significant di↵erence be-
tween linear and quasi-linear predictions especially at s &
60h�1Mpc, where the measured dipoles are all in good
agreement with the linear theory predictions, although the
scatter is somewhat large at z = 0.9 and 1.1. This large
scatter at higher redshifts is mainly attributed to the small
number of pairs of haloes for cross-correlation (see Table 1).

Turning to focus on the scales down to s . 60h�1Mpc,
the measured results including only the gravitational red-
shift e↵ect start to deviate from the linear theory, and they

instead tend to follow the quasi-linear predictions. Though
the scatter of the measurement is large at z = 0.9 and
1.1, the quasi-linear predictions better explain the simula-
tion results if one adopts the numerically estimated non-
perturbative potential (green). Nevertheless, including both
the gravitational redshift and Doppler e↵ects, the di↵erence
between linear theory and quasi-linear predictions dimin-
ishes, and within the statistical errors, all predictions be-
come mostly consistent with the measured dipoles. This is
because the Doppler e↵ect is the main contributor at the
scales shown here, and it gives a positive contribution to
the dipole. For reference, in the left panel of Fig. 8, we also
show the measured dipoles including all other relativistic
e↵ects, such as gravitational lensing and integrated Sachs-
Wolfe e↵ects. The results are depicted as filled grey symbols
with errorbars, but they remain almost unchanged, com-
pared to those including the Doppler and gravitational red-
shift e↵ects (black filled symbols). In this respect, ignoring
other relativistic contributions is relevant and validated for
a quantitative prediction of dipole cross-correlation.

5.3 Dipole cross-correlation at small scales

Next focus on the small-scale behaviors of the dipole cross-
correlation functions. Figs. 9 and 10 shows the results at
5 h�1Mpc  s  30 h�1Mpc, with the meanings of the
symbols and line types being the same as in Figs. 7 and 8.

As expected from the analytical predictions shown in
Sec. 4.2, the measured dipoles drop sharply as decreasing
the separation s, and the deviation from the linear the-
ory prediction, depicted as dashed lines, becomes signifi-
cant. The dipole cross-correlation takes the negative value
and the quasi-linear predictions explain the overall trends
seen in the simulations. In particular, adopting the non-
perturbative halo potential estimated from simulations, the
predicted dipoles (green) including only the gravitational
redshift e↵ect agree well with simulations (Fig. 9), and the
agreement is even nice at s ' 5h�1Mpc, where the quasi-
linear treatment with the Zel’dovich approximation is sup-
posed to become inadequate. While this can be regarded as
a remarkable achievement, a part of the reasons may be as-
cribed to a large impact of the non-perturbative halo poten-
tial at small scales. Indeed, adopting the NFW profile, the
quasi-linear predictions with the non-perturbative potential
(orange) fall o↵more rapidly than the measured dipoles, and
the discrepancy becomes manifest at s . 15h�1Mpc. This
indicates that a precision modelling of non-perturbative po-
tential is rather crucial to detect and discriminate the rela-
tivistic dipole from others at small scales.

On the other hand, looking at the dipole cross-
correlation including both the gravitational redshift and
Doppler e↵ects (Fig. 10), the measured results of the dipoles
become rather noisy and their statistical errors get increased
at higher redshifts. Compared to the statistical errors, the
di↵erences between the two quasi-linear predictions, de-
picted as green and orange lines, are rather comparable or
small, and both of the predictions reasonably explain the
measured trends of the bias and redshift dependences. Nev-
ertheless, at these scales, the nonlinear cross-talk between
the Doppler and gravitational redshift e↵ects becomes im-
portant, and a simple superposition of the predictions tak-
ing separately each e↵ect into account would fail to repro-
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4.4			low-redshift	(z	=	0.33)

Large scales Relativistic RSD 9

Figure 7. (Potential only on large scales) Dipole moment for the Potential only case on large scales at z = 0.33, 0.9, and 1.1 (from
left to right). Top and bottom panels show the di↵erent halo populations: data_H1600⇥data_H100 and data_H800⇥data_H100, respectively.
Among these figures, we show the predictions based on the linear theory (blue-dashed), Zel’dovich approximation with the non-linear
potential based on NFW profile (orange) and N -body simulation (green). The black circles with errorbars are the result of N -body
simulation.

the similar trends are seen in the results at z = 0.9 and 1.1
with larger statistical errors than the results at z = 0.33.

Next, we show the dipole moment for the Doppler and
Potential case on large scales in Fig. 8. All analytical pre-
dictions do not deviate from the results of simulation within
the statistical error. In the dipole moment at z = 0.33 (left),
we show the results of N -body simulation for not only the
Doppler and Potential case (black circle with errorbars) but
also including all the relevant relativistic e↵ects (grey cir-
cle with errorbars). We find that the results for the Doppler
and Potential and all the relevant relativistic e↵ects give al-
most the same mean values and errorbars. This justifies the
statement mentioned in Sec. 2 and presented in Breton et al.
(2019): the dipole moment is dominated by the standard
Doppler term at large scales and by gravitational potential
term at large scales, and the other relativistic corrections
are subdominant at all scales.

5.3 The dipole moment on small scales

We focus on the results of the dipole moment at small scales,
5 h�1Mpc  s  30 h�1Mpc, which corresponds to the
transition from quasi-linear to non-linear scales.

In Fig. 9, we show the dipole moment for the Potential
only on small scales at various redshifts and for halo popu-
lations. On small scales, the dipole moments in simulation
drop very sharply at all redshifts and for all halo popula-
tions, and have negative amplitude. As expected from the
behaviour of the dipole moment in Fig. 3, the dipole mo-
ment in N -body simulation has larger amplitude for larger
di↵erence of biases and non-linear potentials. For instance,
the dipole moment of data_H1600⇥data_H100 at z = 0.33 is
about twice times larger than that of data_H800⇥data_H100

at z = 0.33 on s . 15 h�1Mpc.

Since the dipole moment prediction based on the linear
theory is positive at all scales, it inevitably deviates from
the results of N -body simulation. On the other hand, the
prediction with the non-linear potential based on the simu-
lation (green line) is in good agreement with the results of
N -body simulation. Although the negative dipole moment is
shown by the prediction with the non-linear potential based
on NFW profile (orange line), it tends to be worse than that
on the simulation (green line).

Contrary to the dipole moment at large scales in Fig. 7,
the signals of the dipole moment are su�ciently larger than
their errorbars. The results of N -body simulation at z =
0.33, z = 0.9, and 1.1, agree with the analytical prediction.
Interestingly, as for the analytical predictions in Fig. 4, the
dipole moment for the Potential only in N -body simulation
weakly depends on the redshift.

Finally, we show the dipole moment for the Doppler and
Potential case on small scales in Fig. 10. As for the Poten-
tial only case, the dipole moment in N -body simulation at
z = 0.33 takes a negative value. The errorbars of N -body
simulation at z = 0.9 (centre) and 1.1 (right) are still large.
Within the statistical error, it is di�cult to see the devi-
ation from the linear theory at high-redshifts. Focusing on
the results at low redshift z = 0.33, it is possible to distin-
guish the sign of the dipole moment and their amplitude.
In the Doppler and Potential case, the predictions based on
the simulation (green line) and NFW profile (orange line)
are consistent with the measured dipole moment in the sim-
ulation due to large statistical errors. The dipole moment
at low redshift would be available to test the gravitational
redshift e↵ect.

Before closing this section, we mention the prospects of
the relativistic e↵ects on the dipole moment. We have clar-
ified that the dominant contribution to the dipole moment
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Figure 8. (Doppler and Potential on large scales) Same as Fig. 7 but for the Doppler and Potential case. In the left panels, we
show the dipole moment including all the relativistic e↵ects (grey circle with errorbars) in N -body simulation, discussed in Sec. 2.

Figure 9. (Potential only on small scales) Same as Fig. 7 but for the dipole moment on small scales.

at small scales is the gravitational redshift e↵ect of the non-
linear potential. To detect the signal with a statistically sig-
nificant level, the low-redshift measurements with observing
large number of haloes are crucial. For instance, the mea-
surement at z = 0.33 allows us to explore the configuration
of the dipole moment. On the other hand, the errorbars for
Doppler and Potential case at z = 0.33 are about two times
smaller than those at z = 0.9. Recalling that, for z > 0.5,
we use the data from a narrow light-cone with 2500 deg2

and from a redshift bin with �z = 0.2, the future survey
would probe the dipole moment at high redshift by stacking
redshift bins, e.g. �z = 0.8 or with large sky coverage, e.g.
10000 deg2 (see Appendix E). The future surveys with the

large sky coverage, such as Euclid (Laureijs et al. 2011) or
DESI (?), would be a good probe to investigate the rela-
tivistic e↵ect and be a new complemental probe of the test
of gravity.

6 DISCUSSION AND SUMMARY

The galaxy distribution observed via spectroscopic surveys
is distorted mostly due to the peculiar velocity of galaxies
(standard Doppler e↵ect), and is referred to as the redshift-
space distortions (RSD). On top of the standard Doppler
e↵ect, the observed galaxy distribution is further distorted
due to the relativistic corrections, for instance, gravitational
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Figure 10. (Doppler and Potential on small scales) Same as Fig. 8 but for the dipole moment on small scales.

redshift or Sachs-Wolfe, integrated Sachs-Wolfe, transverse
Doppler, and gravitational lensing e↵ects. The relativistic
corrections lead to an asymmetric clustering along the line-
of-sight galaxies, which usually vanishes for the standard
Doppler e↵ect. Therefore, the measurement of the asym-
metric clustering of galaxies would provide an exciting op-
portunity to test the gravity theory.

Recently, Breton et al. (2019) built the halo catalogue
based on N -body simulation. Finding the null geodesics con-
necting sources to the observer based on ray-tracing tech-
niques (under the weak-field approximation), they identify
the apparent positions of haloes seen by photons. Then, Bre-
ton et al. (2019) studied the halo clustering asymmetry in-
duced by the relativistic e↵ects by measuring the dipole mo-
ment of the cross-correlation function between halo popula-
tions of di↵erent masses. They found that the dipole moment
is dominated by wide-angle e↵ects of the standard Doppler
e↵ect at large scales and by the gravitational redshift e↵ect
at small scales. In particular, the deviation from the linear
theory prediction is seen at small scales due to the gravita-
tional redshift e↵ect. The proper non-linear modelling be-
yond linear theory taking into account wide-angle and grav-
itational redshift e↵ects is crucial to describe the dipole mo-
ment.

To do so, in our companion paper (Taruya et al. 2020),
we developed the quasi-linear formalism of wide-angle ef-
fects based on Zel’dovich approximation to compute the
cross-correlation function between di↵erent biased objects.
In this paper, we further extend the quasi-linear formalism
to incorporate the relativistic e↵ects, especially gravitational
redshift e↵ect. We focus on the cross-correlation function
between two di↵erent biased objects. Since photons emit-
ted from the centre of haloes are significantly a↵ected by
the halo gravitational potential in the non-linear regime, we
introduce a non-linear potential to express the non-linear
gravitational redshift e↵ect. The non-linear potential is esti-
mated based on the NFW profile or N -body simulation. The
analytical predictions are compared with the results of N -

body simulation (Breton et al. 2019) as well as linear theory
prediction.

While the linear prediction is valid only down to s ⇡
60 h�1Mpc, the quasi-linear formalism is in good agreement
with the results of N -body simulation at small scales s &
30 h�1Mpc at various redshifts and for halo populations.
The negative dipole moment found in simulation at quasi-
linear regime, s & 30 h�1Mpc, is also recovered by the quasi-
linear prediction with the non-linear potential. The negative
dipole moment at small scales is understood as the result of
the non-linear halo gravitational potential. We find that the
errorbars for z > 0.5 in N -body simulation are too large to
explore the configuration of the negative dipole moment in
narrow redshift bins of �z = 0.2 because the data comes
from a narrow light-cone of 2500 deg2 (stacking of multiple
bins is needed, see Appendix E). Toward the detection of
the negative dipole moment with a statistically significant
level, as we discussed in Sec. 5, the large and deep surveys
such as Euclid or DESI would help to measure the dipole
moment at high redshift.

Finally, throughout this paper, we have shown the an-
alytical predictions with the non-linear potential estimated
by both the NFW profile and N -body simulation. Although
there is a discrepancy among them, both predictions of the
dipole moment show a quite similar result, and di�cult to
distinguish within the statistical error ofN -body simulation.

In practice,when we apply the quasi-linear formalism
with the non-linear potential to the observations, the non-
linear potential is treated as a new free parameter as well
as the galaxy bias. While the galaxy bias can be determined
by the even multipole moments, which are dominated by the
standard Doppler e↵ect, the e↵ect of the non-linear poten-
tial dominates the dipole moment on small scales. Therefore,
if we use all possible multipole moments to determine the
model parameters, the degeneracy between the non-linear
potential and galaxy bias might be resolved. We will leave
the quantitative forecast for constraining these parameters
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Figure 8. (Doppler and Potential on large scales) Same as Fig. 7 but for the Doppler and Potential case. In the left panels, we
show the dipole moment including all the relativistic e↵ects (grey circle with errorbars) in N -body simulation, discussed in Sec. 2.

Figure 9. (Potential only on small scales) Same as Fig. 7 but for the dipole moment on small scales.

at small scales is the gravitational redshift e↵ect of the non-
linear potential. To detect the signal with a statistically sig-
nificant level, the low-redshift measurements with observing
large number of haloes are crucial. For instance, the mea-
surement at z = 0.33 allows us to explore the configuration
of the dipole moment. On the other hand, the errorbars for
Doppler and Potential case at z = 0.33 are about two times
smaller than those at z = 0.9. Recalling that, for z > 0.5,
we use the data from a narrow light-cone with 2500 deg2

and from a redshift bin with �z = 0.2, the future survey
would probe the dipole moment at high redshift by stacking
redshift bins, e.g. �z = 0.8 or with large sky coverage, e.g.
10000 deg2 (see Appendix E). The future surveys with the

large sky coverage, such as Euclid (Laureijs et al. 2011) or
DESI (?), would be a good probe to investigate the rela-
tivistic e↵ect and be a new complemental probe of the test
of gravity.

6 DISCUSSION AND SUMMARY

The galaxy distribution observed via spectroscopic surveys
is distorted mostly due to the peculiar velocity of galaxies
(standard Doppler e↵ect), and is referred to as the redshift-
space distortions (RSD). On top of the standard Doppler
e↵ect, the observed galaxy distribution is further distorted
due to the relativistic corrections, for instance, gravitational
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Figure 10. (Doppler and Potential on small scales) Same as Fig. 8 but for the dipole moment on small scales.

redshift or Sachs-Wolfe, integrated Sachs-Wolfe, transverse
Doppler, and gravitational lensing e↵ects. The relativistic
corrections lead to an asymmetric clustering along the line-
of-sight galaxies, which usually vanishes for the standard
Doppler e↵ect. Therefore, the measurement of the asym-
metric clustering of galaxies would provide an exciting op-
portunity to test the gravity theory.

Recently, Breton et al. (2019) built the halo catalogue
based on N -body simulation. Finding the null geodesics con-
necting sources to the observer based on ray-tracing tech-
niques (under the weak-field approximation), they identify
the apparent positions of haloes seen by photons. Then, Bre-
ton et al. (2019) studied the halo clustering asymmetry in-
duced by the relativistic e↵ects by measuring the dipole mo-
ment of the cross-correlation function between halo popula-
tions of di↵erent masses. They found that the dipole moment
is dominated by wide-angle e↵ects of the standard Doppler
e↵ect at large scales and by the gravitational redshift e↵ect
at small scales. In particular, the deviation from the linear
theory prediction is seen at small scales due to the gravita-
tional redshift e↵ect. The proper non-linear modelling be-
yond linear theory taking into account wide-angle and grav-
itational redshift e↵ects is crucial to describe the dipole mo-
ment.

To do so, in our companion paper (Taruya et al. 2020),
we developed the quasi-linear formalism of wide-angle ef-
fects based on Zel’dovich approximation to compute the
cross-correlation function between di↵erent biased objects.
In this paper, we further extend the quasi-linear formalism
to incorporate the relativistic e↵ects, especially gravitational
redshift e↵ect. We focus on the cross-correlation function
between two di↵erent biased objects. Since photons emit-
ted from the centre of haloes are significantly a↵ected by
the halo gravitational potential in the non-linear regime, we
introduce a non-linear potential to express the non-linear
gravitational redshift e↵ect. The non-linear potential is esti-
mated based on the NFW profile or N -body simulation. The
analytical predictions are compared with the results of N -

body simulation (Breton et al. 2019) as well as linear theory
prediction.

While the linear prediction is valid only down to s ⇡
60 h�1Mpc, the quasi-linear formalism is in good agreement
with the results of N -body simulation at small scales s &
30 h�1Mpc at various redshifts and for halo populations.
The negative dipole moment found in simulation at quasi-
linear regime, s & 30 h�1Mpc, is also recovered by the quasi-
linear prediction with the non-linear potential. The negative
dipole moment at small scales is understood as the result of
the non-linear halo gravitational potential. We find that the
errorbars for z > 0.5 in N -body simulation are too large to
explore the configuration of the negative dipole moment in
narrow redshift bins of �z = 0.2 because the data comes
from a narrow light-cone of 2500 deg2 (stacking of multiple
bins is needed, see Appendix E). Toward the detection of
the negative dipole moment with a statistically significant
level, as we discussed in Sec. 5, the large and deep surveys
such as Euclid or DESI would help to measure the dipole
moment at high redshift.

Finally, throughout this paper, we have shown the an-
alytical predictions with the non-linear potential estimated
by both the NFW profile and N -body simulation. Although
there is a discrepancy among them, both predictions of the
dipole moment show a quite similar result, and di�cult to
distinguish within the statistical error ofN -body simulation.

In practice,when we apply the quasi-linear formalism
with the non-linear potential to the observations, the non-
linear potential is treated as a new free parameter as well
as the galaxy bias. While the galaxy bias can be determined
by the even multipole moments, which are dominated by the
standard Doppler e↵ect, the e↵ect of the non-linear poten-
tial dominates the dipole moment on small scales. Therefore,
if we use all possible multipole moments to determine the
model parameters, the degeneracy between the non-linear
potential and galaxy bias might be resolved. We will leave
the quantitative forecast for constraining these parameters
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Figure 8. (Doppler and Potential on large scales) Same as Fig. 7 but for the Doppler and Potential case. In the left panels, we
show the dipole moment including all the relativistic e↵ects (grey circle with errorbars) in N -body simulation, discussed in Sec. 2.

Figure 9. (Potential only on small scales) Same as Fig. 7 but for the dipole moment on small scales.

at small scales is the gravitational redshift e↵ect of the non-
linear potential. To detect the signal with a statistically sig-
nificant level, the low-redshift measurements with observing
large number of haloes are crucial. For instance, the mea-
surement at z = 0.33 allows us to explore the configuration
of the dipole moment. On the other hand, the errorbars for
Doppler and Potential case at z = 0.33 are about two times
smaller than those at z = 0.9. Recalling that, for z > 0.5,
we use the data from a narrow light-cone with 2500 deg2

and from a redshift bin with �z = 0.2, the future survey
would probe the dipole moment at high redshift by stacking
redshift bins, e.g. �z = 0.8 or with large sky coverage, e.g.
10000 deg2 (see Appendix E). The future surveys with the

large sky coverage, such as Euclid (Laureijs et al. 2011) or
DESI (?), would be a good probe to investigate the rela-
tivistic e↵ect and be a new complemental probe of the test
of gravity.

6 DISCUSSION AND SUMMARY

The galaxy distribution observed via spectroscopic surveys
is distorted mostly due to the peculiar velocity of galaxies
(standard Doppler e↵ect), and is referred to as the redshift-
space distortions (RSD). On top of the standard Doppler
e↵ect, the observed galaxy distribution is further distorted
due to the relativistic corrections, for instance, gravitational
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Figure 8. (Doppler and Potential on large scales) Same as Fig. 7 but for the Doppler and Potential case. In the left panels, we
show the dipole moment including all the relativistic e↵ects (grey circle with errorbars) in N -body simulation, discussed in Sec. 2.

Figure 9. (Potential only on small scales) Same as Fig. 7 but for the dipole moment on small scales.

at small scales is the gravitational redshift e↵ect of the non-
linear potential. To detect the signal with a statistically sig-
nificant level, the low-redshift measurements with observing
large number of haloes are crucial. For instance, the mea-
surement at z = 0.33 allows us to explore the configuration
of the dipole moment. On the other hand, the errorbars for
Doppler and Potential case at z = 0.33 are about two times
smaller than those at z = 0.9. Recalling that, for z > 0.5,
we use the data from a narrow light-cone with 2500 deg2

and from a redshift bin with �z = 0.2, the future survey
would probe the dipole moment at high redshift by stacking
redshift bins, e.g. �z = 0.8 or with large sky coverage, e.g.
10000 deg2 (see Appendix E). The future surveys with the

large sky coverage, such as Euclid (Laureijs et al. 2011) or
DESI (?), would be a good probe to investigate the rela-
tivistic e↵ect and be a new complemental probe of the test
of gravity.

6 DISCUSSION AND SUMMARY

The galaxy distribution observed via spectroscopic surveys
is distorted mostly due to the peculiar velocity of galaxies
(standard Doppler e↵ect), and is referred to as the redshift-
space distortions (RSD). On top of the standard Doppler
e↵ect, the observed galaxy distribution is further distorted
due to the relativistic corrections, for instance, gravitational

MNRAS 000, 1–18 (2020)

Relativistic RSD 9

Figure 7. (Potential only on large scales) Dipole moment for the Potential only case on large scales at z = 0.33, 0.9, and 1.1 (from
left to right). Top and bottom panels show the di↵erent halo populations: data_H1600⇥data_H100 and data_H800⇥data_H100, respectively.
Among these figures, we show the predictions based on the linear theory (blue-dashed), Zel’dovich approximation with the non-linear
potential based on NFW profile (orange) and N -body simulation (green). The black circles with errorbars are the result of N -body
simulation.

the similar trends are seen in the results at z = 0.9 and 1.1
with larger statistical errors than the results at z = 0.33.

Next, we show the dipole moment for the Doppler and
Potential case on large scales in Fig. 8. All analytical pre-
dictions do not deviate from the results of simulation within
the statistical error. In the dipole moment at z = 0.33 (left),
we show the results of N -body simulation for not only the
Doppler and Potential case (black circle with errorbars) but
also including all the relevant relativistic e↵ects (grey cir-
cle with errorbars). We find that the results for the Doppler
and Potential and all the relevant relativistic e↵ects give al-
most the same mean values and errorbars. This justifies the
statement mentioned in Sec. 2 and presented in Breton et al.
(2019): the dipole moment is dominated by the standard
Doppler term at large scales and by gravitational potential
term at large scales, and the other relativistic corrections
are subdominant at all scales.

5.3 The dipole moment on small scales

We focus on the results of the dipole moment at small scales,
5 h�1Mpc  s  30 h�1Mpc, which corresponds to the
transition from quasi-linear to non-linear scales.

In Fig. 9, we show the dipole moment for the Potential
only on small scales at various redshifts and for halo popu-
lations. On small scales, the dipole moments in simulation
drop very sharply at all redshifts and for all halo popula-
tions, and have negative amplitude. As expected from the
behaviour of the dipole moment in Fig. 3, the dipole mo-
ment in N -body simulation has larger amplitude for larger
di↵erence of biases and non-linear potentials. For instance,
the dipole moment of data_H1600⇥data_H100 at z = 0.33 is
about twice times larger than that of data_H800⇥data_H100

at z = 0.33 on s . 15 h�1Mpc.

Since the dipole moment prediction based on the linear
theory is positive at all scales, it inevitably deviates from
the results of N -body simulation. On the other hand, the
prediction with the non-linear potential based on the simu-
lation (green line) is in good agreement with the results of
N -body simulation. Although the negative dipole moment is
shown by the prediction with the non-linear potential based
on NFW profile (orange line), it tends to be worse than that
on the simulation (green line).

Contrary to the dipole moment at large scales in Fig. 7,
the signals of the dipole moment are su�ciently larger than
their errorbars. The results of N -body simulation at z =
0.33, z = 0.9, and 1.1, agree with the analytical prediction.
Interestingly, as for the analytical predictions in Fig. 4, the
dipole moment for the Potential only in N -body simulation
weakly depends on the redshift.

Finally, we show the dipole moment for the Doppler and
Potential case on small scales in Fig. 10. As for the Poten-
tial only case, the dipole moment in N -body simulation at
z = 0.33 takes a negative value. The errorbars of N -body
simulation at z = 0.9 (centre) and 1.1 (right) are still large.
Within the statistical error, it is di�cult to see the devi-
ation from the linear theory at high-redshifts. Focusing on
the results at low redshift z = 0.33, it is possible to distin-
guish the sign of the dipole moment and their amplitude.
In the Doppler and Potential case, the predictions based on
the simulation (green line) and NFW profile (orange line)
are consistent with the measured dipole moment in the sim-
ulation due to large statistical errors. The dipole moment
at low redshift would be available to test the gravitational
redshift e↵ect.

Before closing this section, we mention the prospects of
the relativistic e↵ects on the dipole moment. We have clar-
ified that the dominant contribution to the dipole moment

MNRAS 000, 1–18 (2020)

Gravitational redshift

Doppler 
& Gravitational redshift

Small scales

Gravitational redshift

Doppler 
& Gravitational redshift

S.Saga, A.Taruya, M-A.Breton, Y.Rasera [2004.03772]

Large scales

Linear theory
Our model [w/ ΦNL(NFW)]
Our model [w/ ΦNL(N-body)]
RayGalGroupSims

Linear theory
Our model [w/ ΦNL(NFW)]
Our model [w/ ΦNL(N-body)]
RayGalGroupSims

http://www2.yukawa.kyoto-u.ac.jp/~shohei.saga/
https://doi.org/10.1093/mnras/staa2232
http://arxiv.org/abs/2004.03772


1. Relativistic	effects	on	large-sale	structure	
2. Relativistic	Redshift	Space	Distortions	
3. Simulations	(RayGalGroupSims)	
4. Results:	Quasi-linear	modelling	
5. Summary



Shohei SagaRelativistic redshift-space distortions at quasi-linear scales

5.		Summary
Based on Zel'dovich approximation + non-linear potential 

We construct the quasi-linear model taking into account both 
Doppler and Gravitational redshift effects 

✓ Our model describes RayGalGroupSims results 
✓ Linear theory is recovered at large scales. 
✓ Non-linear halo potential plays important role at small 

scales 
✤ New probe of gravity? 
✤ Detectability e.g., Euclid?

Φ = ΦL + ΦNL

s = r + 1 + z
H

(v ⋅ ̂r) ̂r − 1 + z
H

Φ
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