Binary stars ratio in *Gaia* DR2

Blending in gravitational microlensing survey efficiency estimation

Tristan Blaineau, Marc Moniez

IJCLab

Action Dark Energy, October 2020

ADE 2020 1 / 12

Gravitational microlensing

Microlensing

Gravitational lensing but only the **magnification** is detected. This magnification is **time-dependent**.

Characteristic scales : Einstein angle θ_E (radius R_E); Einstein time $t_E = \theta_E/\mu$.

- Intermediate mass black holes as dark matter ($M \sim 100 M_{\odot}$, $\theta_E \sim 4 mas$, $t_E \sim 700 d$)
- Study deflector population by observing a lot of sources (in LMC) over a long period (years).
- \Rightarrow estimate the number of expected lenses effects, compare to observed.
- ⇒ depends on : deflector characteristics, survey parameters such as search algorithm efficiency, **number of monitored stars**, ... etc

- 4 伊 ト 4 ヨ ト 4 ヨ

What is the number of monitored stars : Blending in LMC

A source in the microlensing experiment can be (is) composed of **several** stars.

Figure: Left : image from EROS. Right : image from HST of the same zone. The red circles are identified sources in EROS and have a diameter of 3 arcsec.

T. Blaineau (IJCLab)

Binary stars ratio in Gaia DR2

ADE 2020 3 / 12

< <p>I > < </p>

A source in the microlensing experiment can be (is) composed of **several stars**.

Two competing effects on efficiency:

- Greater number of monitored stars.
- Light of amplified star blended with the others \Rightarrow lower relative amplification.

We need to understand what is hidden behind a catalogue source.

• What is hidden behind a source ? Comparison between catalogue and HST.

Figure: Spatial correlation function of HST toward LMC

• What is hidden behind a source ? Comparison between catalogue and HST.

Figure: Spatial correlation function of HST toward LMC

• In HST : minimum separation of \sim 0.5 arcsec \rightarrow 25000 AU in LMC.

• What is hidden behind a source ? Comparison between catalogue and HST.

Figure: Spatial correlation function of HST toward LMC

- In HST : minimum separation of \sim 0.5 arcsec \rightarrow 25000 AU in LMC.
- Einstein radius projected in LMC $R_E \sim 200 AU$ (for a deflector of $100 M_{\odot}$).
 - 2 sources closer than *R_E* are lensed together

• What is hidden behind a source ? Comparison between catalogue and HST.

Figure: Spatial correlation function of HST toward LMC

- In HST : minimum separation of ~ 0.5 arcsec $\rightarrow 25000$ AU in LMC.
- Einstein radius projected in LMC $R_E \sim 200AU$ (for a deflector of $100M_{\odot}$).
 - 2 sources closer than R_E are lensed together
- R_E < separation < 25000 UA :

uniform or clustered ?

Use of Gaia DR2

 ${\bf Aim}$: quantify the unresolved physical binary population in HST, in the scope of the blending.

We use *Gaia* DR2 to study nearby stellar clustering, and we extrapolate the results to the LMC (50 kpc).

- \bullet between 100 and 600 pc, parallax relative error <20%
- absolute magnitude interval, in Gaia completeness domain
- 30° radius cones along galactic north and south

First remarks

Uniform random distribution : $dP = 2\pi nN \sin \alpha d\alpha \approx 2\pi nN \alpha d\alpha$

- n : stellar density
- N: total number of stars
- α : angular separation
- P : number of pairs

- Overabundance at small scales.
- pairs with separation < 10 arcsec : 99 % of stars appears only once \Rightarrow binary stars largely dominating.

T. Blaineau (IJCLab)

ADE 2020 6 / 12

Minimal separation in Gaia DR2

- $\bullet\,$ Can't resolve stars closer than ~ 0.4 arcsec.
- Density fluctuations (instrumental effects) \Rightarrow discard pairs < 2 arcsec

Figure: Angular separation 2D distribution along ecliptic longitudinal and latitudinal axis, red circle has 2 arcsec radius.

Binary rate estimation

- Divide the sample in distance shells, and for each :
 - Count pairs by physical separation

Binary rate estimation

- Divide the sample in distance shells, and for each :
 - Count pairs by physical separation
 - Subtract random coincidences contribution

Binary rate estimation

- Divide the sample in distance shells, and for each :
 - Count pairs by physical separation
 - Subtract random coincidences contribution
 - Normalize to number of stars in shell

Binarity rate estimation

Binary rate (sep > 200 AU)

 $f_{BS}(200AU) = 1.1\% \pm 0.2$ (stat)

Systematics (WIP):

- Gaia parallax selection : ok
- magnitude range limited to GAIA completeness

Extrapolating toward LMC :

- $\bullet \ \text{neighbourhood} \to \mathsf{LMC}$
- \neq magnitude ranges

separation with maximal probability : $\mathsf{mode} = e^{\mu - \sigma^2}$

ADE 2020 10 / 12

We quantified the binary system rate in unresolved separation domains (HST in LMC).

- Was not studied in the past microlensing experiments.
- Small binary rate in our separation domain : $\lesssim 2\%$ (preliminary) (assuming validity of extrapolation from nearby to LMC)
- \Rightarrow Limited impact on heavy lenses microlensing survey efficiency (\rightarrow on constraints on black holes fraction in dark matter)

We quantified the binary system rate in unresolved separation domains (HST in LMC).

- Was not studied in the past microlensing experiments.
- Small binary rate in our separation domain : $\lesssim 2\%$ (preliminary) (assuming validity of extrapolation from nearby to LMC)
- \Rightarrow Limited impact on heavy lenses microlensing survey efficiency (\rightarrow on constraints on black holes fraction in dark matter)

Thanks for your attention.

4 E > 4

Backup

T. Blaineau (IJCLab)

Binary stars ratio in Gaia DR2

E ADE 2020 $11 \, / \, 12$

-

<ロト <回ト < 回ト <

900

Parallax relative errors

Binary stars ratio in Gaia DR2

ADE 2020 11 / 12

990

Figure: From Raghavan et al. 2010

Binary stars ratio in Gaia DR2

Э ADE 2020 12 / 12

900

< □ > < □ > < □ > < □ > < □ >