# Predicting Large-Scale Lyman-α Forest Statistics with



Lyman- $\alpha$  Mass Association Scheme (2014, ApJ, 784, 11)

#### Sébastien Peirani (OCA - Lagrange)

D. Weinberg, S. Colombi, J. Blaizot, Y. Dubois, J. Devriendt, C. Pichon

# Predicting Large-Scale Lyman-α Forest Statistics with



Lyman- $\alpha$  Mass Association Scheme (2014, ApJ, 784, 11)

#### Sébastien Peirani (OCA - Lagrange)

D. Weinberg, S. Colombi, J. Blaizot, Y. Dubois, J. Devriendt, C. Pichon

#### LyMAS: Ly $\alpha$ Mass Association Scheme



#### **Motivations**

1) Test a cosmological + galaxy formation model by considering Lyman- $\alpha$  at large scales (Gpc)

2) Improve the theoretical predictions, in particular at low scales (few Mpc)

# Construction of Mock Ly- $\alpha$ spectra for large surveys







# Construction of Mock Ly- $\alpha$ spectra for large surveys



Gaussian initial conditions Log-normal DM density field from N-body simulation density field



#### **Problems of this approach:**

- Model Gpc<sup>3</sup> volume while retaining good resolution on the gas Jeans scale
- The choice of the smoothing scale for DM produces ambiguity in the predictions
- The FGPA assumes a deterministic relation between  $\rho$  and *F*=e<sup>- $\tau$ </sup>

 $F = e^{-A\left(\frac{\rho}{\overline{\rho}}\right)^{2-0.6(\gamma-1)}}$   $\gamma$ -1 : index of the gas temperature-density relation



1. Introduction



- 2. Hydro simulations and hydro spectra
- 3. Deterministic mapping
- 4. LyMAS Probabilistic mapping
- 5. LyMAS Coherent mapping
- 6. Application to large N-body simulations
- 7. Next

# **Hydro simulations**

#### Dubois et al. 2014

#### Vogelsberger et al. 2014

#### Schaye et al. 2015

#### Horizon-AGN



# Ramses L<sub>box</sub> 142 Mpc M<sub>dm</sub> 8.3x10<sup>7</sup> M<sub>☉</sub> <sup>ɛ</sup>dm 1 kpc AMR AMR 6.6x10<sup>9</sup> cells M<sub>g,\*</sub> 2x10<sup>6</sup> M<sub>☉</sub>

Illustris



AREPO 106.5 Mpc 6.3x10<sup>6</sup> M<sub>•</sub>

0.7 kpc moving mesh s 5.3x10<sup>9</sup> cells 1.3x10<sup>6</sup> M EAGLE



Gadget-2 100 Mpc 9.7x10<sup>6</sup> M

0.7 kpc SPH 3.4x10<sup>9</sup> gas parts. 1.8x10<sup>6</sup> M<sub>☉</sub>

see also MassiveBlackII (DiMatteo 2016), Magneticum Pathfinder simulations (Dolag et al.), Sherwood simulations (Bolton et al. 2016),...

#### LyMAS: Ly $\alpha$ Mass Association Scheme



#### **Extracting Ly** $\alpha$ spectra

For a given los, the opacity at observer-frame frequency  $v_{obs}$ :

$$\tau(\upsilon_{obs}) = \sum_{cells} n_{HI} \sigma(v_{obs}) dl$$

 $\mathcal{N}_{HI}$  : numerical density of neutral H atoms in each cell *d*] : physical cell size

 $\sigma(v_{obs})$  : the cross section of Hydrogen to Lylpha photons  $\sigma(v_{obs}) = f_{12} \frac{\pi e^2}{m_e c} \times \frac{H(a, x)}{\sqrt{\pi} \Delta v_p}$  $f_{12} = 0.4162$  : Ly $\alpha$  oscillator strength  $\Delta v_D = (2k_BT / m_H)^{1/2} \times v_Q / c$  $a = \Delta \upsilon_L / (2\Delta \upsilon_D) \qquad \Delta \upsilon_L \approx 9.9 \, 10^7 \, s^{-1}$  $H(a, x) = \frac{a}{\pi} \int_{-1}^{1} \frac{e^{-y^2}}{a^2 + (x - y)^2} \, dy \quad \text{: the Hjerting function}$ 



Grid of density transmitted Flux (1024<sup>3</sup> voxels)



#### Extracting Ly $\alpha$ spectra

Slice







1. Adaptive interpolation of the DM particle distribution on a high resolution grid. (Colombi, Chodorowski & Teyssier 2007)

- 2. Smoothing with a Gaussian window in Fourier space
- 3. Extraction of the skewers from a grid of lines of sight aligned along the z axis



Grid of density field 1+ $\delta$  (1024<sup>3</sup> pixels)





Ζ

Slice

PDF



3-d smoothed at different scales



(Peirani et al. in prep)



(Peirani et al. in prep)





- 1. Introduction
- 2. Hydro simulations and hydro spectra



- 3. Deterministic mapping
- 4. LyMAS Probabilistic mapping
- 5. LyMAS Coherent mapping
- 6. Application to large N-body simulations
- 7. Next

Construction of an "optimal" deterministic relation:  $F_s = f(1+\delta_s)$  (Gallerani+ 2011)  $\int_{0}^{F_{s}} P(F_{s}') dF_{s}' = \int_{\delta_{s}}^{\infty} P(\delta_{s}') d\delta_{s}'$ Grid of transmitted flux F<sub>s</sub> Grid of DM density contrast **1+**δ<sub>s</sub> 1.0 1.0 Flux - Real-space Dark matter  $(\sigma=0.3 \text{ Mpc/h})$ 0.8 0.8 Real-space 0.6 0.6 P(<F\_s) P(>∆) 0.4 0.4 0.2 0.2 **F**<sub>s</sub> 0.0 0.0 -1.0 -0.5 0.0 0.5 1.5 0.0 0.2 0.4 0.6 0.8 1.0 1.0  $\Delta = \log(1 + \delta_s)$  $F_s$ 

**1.** Construction of a deterministic relation:

$$F_s = f(1 + \delta_s)$$















- 1. Introduction
- 2. Hydro simulations and hydro spectra
- 3. Deterministic mapping



- 4. LyMAS Probabilistic mapping
- 5. LyMAS Coherent mapping
- 6. Application to large N-body simulations
- 7. Next

#### **Predicting conditional Flux distributions**



#### **Predicting conditional Flux distributions**

$$P(F_s|1+\delta_s)$$

Ex:



Optical depth: 
$$\tau_s = -\ln F_s$$
  
 $P(\tau_s | 1 + \delta_s)$ 



#### **Predicting conditional Flux distributions**



# **Probabilistic mapping**



# **Probabilistic mapping**



## **Probabilistic mapping**







- 1. Introduction
- 2. Hydro simulations and hydro spectra
- 3. Deterministic mapping
- 4. LyMAS Probabilistic mapping



- 5. LyMAS Coherent mapping
- 6. Application to large N-body simulations
- 7. Next

1. From each DM skewer Generate 1-d Gaussian field with specific power spectrum



- derived from  $P(F_s|1+\delta_s)$  statistics (Peirani et al. 2014)
- Derived from Wiener filtering + DM velocity field (Peirani et al. in prep)



- 2. One iteration:
  - Pk rescaling: multiply each Fourier components by the ratio  $[P_F(k)/P_{PS}(k)]^2$
  - Flux rescaling







#### 4. Iteration on 1d-Pk:

(multiply each Fourier components by the ratio  $[P_F(k)/P_{PS}(k)]^2$ )



#### 4. Iteration on F<sub>s</sub>:



#### 4. Iteration on F<sub>s</sub>:


# Mapping

Hydro Spectra F<sub>s</sub> 1d P<sub>k</sub> PDF(F<sub>s</sub>) ξ**(x)** 



**Deterministic** mapping



LyMAS probabilistics









1d P<sub>k</sub> PDF(F<sub>s</sub>) ξ**(x)** 

### **Correlation function**



## What's next?

#### 1) Improved mocks (Peirani et al. 2020 in prep)



10.0

5.



## What's next?

#### 1) Improved mocks (Peirani et al. 2020 in prep)





- 1. Introduction
- 2. Hydro simulations and hydro spectra
- 3. Deterministic mapping
- 4. LyMAS Probabilistic mapping
- 5. LyMAS Coherent mapping



- 6. Application to large N-body simulations
- 7. Next

#### Gadget2 (Springel 2005)

300 Mpc/h - 2048³ particles - WMAP7 cosmology  $\sigma_{\text{DM}}$ =0.3 Mpc/h

1.0 Gpc/h - 2948<sup>3</sup> particles - WMAP7 cosmology  $\sigma_{DM}$ =1.0 Mpc/h











z (Mpc/h)

#### **Correlation function:**



### Cross correlation quasar Ly $\alpha$ in BOSS survey





"Modelling the Lya forest cross correlation with LyMAS"

Lochhass, Weinberg, Peirani, Dubois, Colombi, Blaizot, Font-Ribera, Pichon & Devriendt, 2016

### Cross correlation quasar Ly $\alpha$ in BOSS survey

0.0

1.0 Gpc/h - 2048<sup>3</sup> particles - WMAP7 cosmology

ರ**\_DM**=1.0 Mpc/h

 $(
u, u, v, u) \in (0, 2\pi)$  $-0.2 - 4 < \sigma < 7 Mpc/h$  $1 < \sigma < 4 \mathrm{Mpc}/h$ -0.420 4060 60 -80 -60 -40 -2080 -80 -60 -40 -202040 0.0-0.04-0.08 $10 < \sigma < 15 \text{ Mpc}/h$  $7 < \sigma < 10 \text{ Mpc}/h$ -0.08204060 80 -80 -60 -40 -202040 60 80 -80 -60 -40 -20 $( \begin{array}{c} 0.0 \\ \mu \\ \mu \\ \nu \end{array} - 0.02$ 0.0-0.01 $20 < \sigma < 30 \text{ Mpc}/h$  $15 < \sigma < 20 \text{ Mpc}/h$ -0.02-0.04-80 - 60 - 402040 60 60 -2080 -60 - 402040 -80 $\cdot 20$ Δ 0.00.0  $(b, \mu) = 0.005$ -0.004 -0.01 $30 < \sigma < 40 \text{ Mpc}/h$  $-0.008 - 40 < \sigma < 60 \text{ Mpc}/h$ -80 -60 -40 -202060 40 2040 60 0 -60 -40 -2080  $\pi (h^{-1} \text{ Mpc})$ 0.0 $(\dot{\nu}, 0.0)$ FR12 DLAs  $M_{12} = 0.5$ ģ FR13 quasars  $M_{12} = 2.0$ ¥  $-0.004 - 60 < \sigma < 80 \text{ Mpc}/h$  $M_{12} = 8.0$ -80 -60 -40-202040 60 80 0  $\pi (h^{-1} \text{ Mpc})$ 

0.0

-0.1

80

80

80



- 1. Introduction
- 2. Hydro simulations and hydro spectra
- 3. Deterministic mapping
- 4. LyMAS Probabilistic mapping
- 5. LyMAS Coherent mapping
- 6. Application to large N-body simulations



7. Next

# **Numerical modeling improvements**

- 1. Algorithms
  - QSO continuum
  - Redshift evolution
  - Noises
  - Non constant spectral resolution
  - Etc...
- 2. Simulations and more realistic catalogs of spectra
  - N-body simulations : ≥ 2 Gpc/h (BAO study)
  - Light cones
  - Etc...

### *"MoLUSC: a MOck Local Universe Survey Constructor"* 2008, ApJ, 678, 569 T. Sousbie, H. Courtois, G. Bryan & J. Devriendt















# **Available mocks**

1) WMAP1 (Marenostrum) 300 Mpc/h (4096^2 spectra) 1 Gpc/h (4096^2 spectra)

from Gadget2 (1024^3 parts. and  $\sigma_{DM}$ =0.3 and 1 Mpc/h)

2) WMAP7 (Horizon-AGN) 1 Gpc/h (4096^2) from Gadget2 (2048^3 parts. and  $\sigma_{DM}$ =0.5 Mpc/h)

+ 5 hydro simulations (100 Mpc/h): 512^2 spectra each

3) WMAP7 (Horizon-AGN) 1 Gpc/h (4096^2 spectra) using improved LyMAS (summer 2020)

# **MAMMOTH + LyMAS**





"MApping the Most Massive Overdensity Through Hydrogen (MAMMOTH): I – Cai, Fan, Bian, Peirani et al. 2016, ApJ 833, 135

# Web : www2.iap.fr/users/lymas/lymas.htm



### MareNostrum (2006)

# Horizon-MareNsotrum simulation

(PI J. Devriendt, R. Teyssier, G. Yepes)

- L<sub>box</sub>=50 Mpc/h
- 1024<sup>3</sup> DM particles M<sub>DM,res</sub>=8x10<sup>6</sup> M<sub>sun</sub>
- Finest cell resolution dx=1 kpc (-1 level of refin.)
- Gas cooling & UV background heating
- Low efficiency star formation
- Stellar winds + SNII + SNIa
- O, Fe, C, N, Si, Mg, H metals w/ solar composition
- AGN feedback radio/quasar
- Outputs
  - Simulation outputs
  - Lightcones (1°x1°) performed on-the-fly
    - Dark Matter (position, velocity)
    - Gas (position, density, velocity, pressure, chemistry)
    - Stars (position, mass, velocity, age, chemistry)
    - Black holes (position, mass, velocity, accretion rate)
- z=1.5 using 1.3 Mhours using 2048 cores



# **Horizon-AGN**

#### Horizon-AGN simulation

- L<sub>box</sub>=100 Mpc/h
- 1024<sup>3</sup> DM particles M<sub>DM,res</sub>=8x10<sup>7</sup> M<sub>sun</sub>
- Finest cell resolution dx=1 kpc (-1 level of refin.)
- Gas cooling & UV background heating
- Low efficiency star formation
- Stellar winds + SNII + SNIa
- O, Fe, C, N, Si, Mg, H
- AGN feedback radio/quasar
- Outputs
  - Simulation outputs
  - Lightcones (1°x1°) performed on-the-fly
    - Dark Matter (position, velocity)
    - Gas (position, density, velocity, pressure, chemistry)
    - Stars (position, mass, velocity, age, chemistry)
    - Black holes (position, mass, velocity, accretion rate)
- z=0.05 using 10 Mhours using 4096 cores



Dubois et al. (2014)

# **RAMSES:** an adaptive Mesh Refinement (AMR) code

- Language :
  - Fortran 90
  - MPI parallel
- Method : adaptive grid refinement
- Equations :
  - Hydrodynamics
  - Gravity
  - Atomic/Metal cooling + UV-heating
  - (Magneto-hydrodynamics)
  - (Radiative transfer)
- Sub-grid physics :
  - Star formation
  - Supernovae & Stellar Winds
  - Active Galactic Nuclei (AGN)
- Cosmology

See Teyssier, 2002



700 h<sup>-1</sup> ps

**1.** Construction of "percentile spectra": *P* 

$$Per(F_{S}, \delta_{S}) = \int_{0}^{F_{S}} P(F_{S}' | \delta_{S}) dF_{S}'$$



2. Construction of "Gaussianized" percentile spectra (Weinberg 1992):







3. Derive the 1d power spectrum of the "Gaussianized percentile spectra":



- 1. For each DM skewer, create a realization of G.Per(x) of the 1-d gaussian field
- 2. Get a realization of Per(F) by "degaussianization"

3. Get the flux field by drawing the flux at each pixel from the location of in  $P(F_s|1+\delta_s)$  implied by the value of Per(F)



- 4. One iteration:
  - Pk rescaling: multiply each Fourier components by the ratio  $[P_F(k)/P_{PS}(k)]^2$
  - Flux rescaling









#### Cross correlation quasar Ly $\alpha$ in BOSS survey



Figure 2. The cross-correlation between dark matter halos and Ly- $\alpha$  forest flux calculated from true gas spectra (black solid) and from LyMAS applied to the matter distribution with 0.3  $h^{-1}$  Mpc 3-d dark matter smoothing (blue dashed), 0.5  $h^{-1}$  Mpc smoothing (cyan dot-dashed), or 1.0 Mpc  $h^{-1}$  Mpc smoothing (green solid) in the (100  $h^{-1}$  Mpc)<sup>3</sup> simulation. Rows show transverse separation bins  $\sigma = 1 - 4$ , 4 - 7, and  $7 - 10 h^{-1}$  Mpc, and columns show dark matter halo mass bins  $M_{12} = 1.68 - 3.35$  and 3.35 - 6.70. Similar agreement holds in other mass and separation bins. Error bars are computed from the standard deviation of the mean among 16 subvolumes.

# Horizon-AGN – Horizon-noAGN (2014)

#### Horizon-AGN



#### Horizon-noAGN



Gas density Gas temperature Gas metallicity

- L<sub>box</sub>=100 Mpc/h
- 1024<sup>3</sup> DM particles M<sub>DM,res</sub>=8x10<sup>7</sup> M<sub>sun</sub>
- Finest cell resolution dx=1 kpc (-1 level of refin.)
- Gas cooling & UV background heating

- Low efficiency star formation
- Stellar winds + SNII + SNIa
- O, Fe, C, N, Si, Mg, H
- AGN feedback radio/quasar

#### **AGN vs noAGN**


## AGN vs noAGN



## **Application to large cosmological DM simulations**

