

Emmanuel Schaan Chamberlain fellow

Halo gas thermodynamics from the CMB

Implications for large-scale structure & galaxy formation

arxiv:2009.05557, arxiv:2009.05558

with Stefania Amodeo, Simone Ferraro, Nick Battaglia, ACT, Kendrick Smith, Mariana Vargas-Magaña

Missing baryon "opportunity": Galaxy formation & Cosmology

Haider+16, Illustris simulation

Feedback pushes gas outside virial radius Too faint to detect around low mass halos, at high z

 \rightarrow Localization is uncertain

Baryons ~15% total matter → Largest (30%) uncertainty on the smallscale matter power spectrum

"Galaxy-galaxy lensing is low" tension

Baryons, photo-z, shear calibration, HOD, assembly bias, new physics?

\rightarrow Directly measure gas profiles for the same exact halos?

CMB can help! ACT+Planck

Naess+20

(High-res CMB digression :))

Fornax A

ACT+Planck f090 - f150 Radio+Optical

Helix Nebula

ACT+Planck multifreq

Hubble

Supernova remnant W44

ACT+Planck f090 - f220 VLA+Spitzer

Naess+20

Kinematic & thermal Sunyaev-Zel'dovich effects

 $\frac{\delta T_{\rm kSZ}}{T_{\rm CMB}} = \tau \frac{v_{\rm bulk}}{c} \propto n_e$ $\rightarrow \text{gas density}$ $\frac{\delta T_{\rm tSZ}}{T_{\rm CMB}} = f(\nu) \tau \left(\frac{v_{\rm thermal}}{c}\right)^2 \propto n_e T_e$ $\rightarrow \text{gas thermal energy / pressure}$

Hand et al 2012

\rightarrow Unexplored territory:

Low mass halos, high z, far outside the virial radius

High S/N with CMB S4 & DESI

and lensing profiles for the same halos!

Combining BOSS & ACT+Planck

RA=0

BOSS CMASS

Spectroscopic sample ~400k galaxy groups, $10^{13}M_{\odot}$ z = 0.4 - 0.7 BAO, Clustering, galaxy-galaxy lensing, CMB lensing

ACT + Planck

ACT DR5 + Planck,150GHz and 98GHz

Naess+20

ACT DR4 ILC maps Madhavacheril+20, Choi+20, Aiola+20

Image: Debra Kellner

CMASS kSZ

Imaging the gas! (no filtering applied) Highest significance kSZ measurement: 6-8σ Large-scale CMB noise in common, small-scale detector noise independent

Gas does not follow DM

Schaan Ferraro Amodeo Battaglia & ACT 20

The gas profile is more extended than the dark matter profile

No-kSZ rejected at 6-8 σ , but NFW rejected at >90 σ !

Total mass profile and gas profile

Same halos, HOD, weighting (linear in mass, VS tSZ or Xray), angular scales → no modeling needed

"Lensing is low" tension

Amodeo Battaglia Schaan Ferraro & ACT 20

kSZ determines the baryonic contribution! Baryons only partially alleviate the tension

Subtleties

Reaction of the DM to the expelled baryons

Schneider+19: "adiabatic relaxation" of the DM when the baryons are pushed out by feedback

 $\frac{r_f}{r_i} - 1 = a \left[\left(\frac{M_i}{M_f} \right)^n - 1 \right], \qquad \qquad M_i \equiv M_{\rm nfw}(r_i), \\ M_f \equiv f_{\rm clm} M_{\rm nfw}(r_i) + M_{\rm cga}(r_f) + M_{\rm gas}(r_f) \\ Schneider+19$

Baryonic effect on cosmic shear without measuring all halos

CMASS tSZ + dust

Extended tSZ profile is well resolved! Point-like dust emission at 150 GHz, modeled with Herschel data / nulled with constrained ILC

Measurement summary

tSZ / kSZ = gas temperature

$$\frac{\delta T_{\rm kSZ}}{T_{\rm CMB}} = \tau \frac{v_{\rm bulk}}{c} \propto n_e$$
$$\frac{\delta T_{\rm tSZ}}{T_{\rm CMB}} = f(\nu) \tau \left(\frac{v_{\rm thermal}}{c}\right)^2 \propto n_e T_e$$

Amodeo Battaglia Schaan Ferraro & ACT 20

Energy injection & non-thermal pressure

Hydro simulations

Amodeo Battaglia Schaan Ferraro & ACT 20

New territory: low halo masses, outside virial radius Data suggests hotter gas in the outskirts Informs subgrid feedback prescriptions in hydro sims

DESI has started!

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

5k fiber spectrograph on 4m Mayall telescope → 5% kSZ by Y1

Conclusions

Highest kSZ signal-to-noise to date (6-8 σ)

Gas more extended than dark matter (formally >90 σ)

KSZ fixes the baryonic contribution to galaxy-galaxy lensing

KSZ & tSZ: gas temperature, feedback energy, non-thermal pressure → new input for hydro simulations

Measurement summary

