

Jean-Paul KNEIB EPFL, Switzerland/Marseille, France e-BOSS collaboration

Graphic: Anze Slozar

Outline

- Why the eBOSS survey?
 - Historical and Scientific Context
 - eBOSS targeting
 - What did not work !
- eBOSS in a nutshell
- Some of the eBOSS results
- What's next?

Key Milestones before eBOSS

- <u>1998/98</u>: SNIe suggest acceleration of the expansion of the Universe => first evidence of Dark Energy - Lambda-CDM becomes the standard cosmological model
- 2000+: Balloon born experiments measure the first acoustic peak in the CMB => flat universe
- 2001: 2dF matter density is 0.3
- 2003:WMAP First Data Release and Results
- 2005: SDSS LRG first detect the BAO peak at z~0.3
- 2006: Dark Energy Task Force strategic planning for DE measurements - stage II (current), III (DES, BOSS), IV (SNAP ... DESI, Euclid) experiments
- Fall 2009: Start of the SDSS-III/BOSS survey [distance at 1% precision]
- Oct 2011: Selection of *Euclid* accelerated expansion gets the Nobel Prize

Start of eBOSS

e-BOSS FoMs

- 2002-2008: The SNAP saga => JDEM (2009) => WFIRST (2011)
- 2009: start of the BigBOSS project (former name of DESI) DE from BAO/massive spectroscopy
- June 2010: BOSS ancillary proposals to targets ELGs for the BigBOSS project.
- Feb 2011: First results from the BOSS ELG projects z=1.62 from [OII] doublet, presented at the BigBOSS meeting
- March 2011: eBOSS: a proposal idea for After-Sloan-3
- Sep 2011: eBOSS proposal submitted (ELGs+QSOs focussed)
- Nov 2011: eBOSS recommended for implementation (adding SPIDERS and TDSS in), if imaging data can be secured before survey start.

eBOSS: Measuring the Expansion History of the Universe between 7 and 11 billions of light years with Galaxies & Quasars

eBOSS

Size of our Cosmic microwave background Milky Way Slice Position of most distant observed object (Z=10.3) eBOSS Here and today 5 billioa years ago 10 billion years ago Most complete mapping of observed universe 13 billion years ago 3.7 billion ter Discovery Space , in billions of light ?

Size of the observable universe : 90 billion light years

DEUS simulation

Gas that falls into a black hole settles into a so-called accretion disk. Friction and magnetic fields in the disk cause the gas to heat and emit UV and X-ray light.

How ? with a QSO survey Measuring the distribution of MOST known QSOs (~1 million) using different detection techniques (UV excess, WISE, variability, X-ray)

TDSS SPIDERS

eBOSS

How ? with a Galaxy survey Measuring the distribution of ~half a million 0.6<z<1 LRGs and ELGs building on new imaging surveys: - WISE for LRGs - SCUSS and DES for ELGs

SDSS imaging

SDSS

eBOSS

SCUSS U-band + SDSS gri

DES grz selection

RG

Target Selection

CFHT-LS

2.0

1.0

0.5

0.0

-0.5

U-R

1. 375k (50 deg⁻²) Luminous Red Galaxies

- Selected at 0.6< z <0.8 with SDSS+WISE
- Efficient BAO tracers due to large bias

2. 270k (170* deg⁻²) Emission Line Galaxies (ELGs)

- Selected at 0.6<z<1, when star formation rates were high with SDSS+U-band or DES+U-band
- 3. 700k (90 deg⁻²) "Core" QSOs (1 million including SDSS archive)
- Target *all* we can, most 1 < z < 2.15 with SDSS+U-band+WISE
- 4. 150k (20 deg⁻²) Lyman-alpha QSOs (z > 2.15)
- 3-D density map from Ly-a forest, selected from variability (PTF/PS1)

5. ~30k TDSS

- variability objects from PannSTARRS-1 (3PI data)
- 6. ~30k eROSITA sources (mainly AGN and a few cluster members)

ELG sample over 1500 deg²; LRGs & QSOs over 7500 deg²

eBOSS galaxy selection

eBOSS clustering techniques

Direct tracers Galaxies and quasars (z<2.1) Absorption in quasar spectra by foreground Lyman-alpha forest (z>2.1)

	Redshift range	Ngal	BAO	measur	ement
LRG	z>0.6	350k		0,9 %	
ELG	0.6 <z<1.0< td=""><td>190k</td><td></td><td>2 %</td><td></td></z<1.0<>	190k		2 %	
QSO	0.9 <z<2.2< td=""><td>510k</td><td></td><td>I,8 %</td><td></td></z<2.2<>	510k		I,8 %	
QSO Ly-alpha	2.15 <z<3.5< td=""><td>50k</td><td></td><td>1,1 %</td><td></td></z<3.5<>	50k		1,1 %	

- eBOSS will observe multiple samples, covering a wide redshift range
- Decrease risk, enhance science return
- BAO DETF FoM increase by a factor of ~2.2 from BOSS to eBOSS (Assume Planck CMB measurements, 5% H₀ constraint)

11

What did not work !

Proposed idea to use a robotic fiber positioner => judge risky to develop in less than 3 years. *Now implemented for SDSS-V* => required 4 years (3.5 without COVID+expertise from DESI+MOONS)

Proposed ideas to collect new imaging:

- With CFHT: S^3 prop => become CFIS
- With the 2.3m WIRO telescope (U-band survey) => camera not ready on time
- With the SCUSS survey (U-band from the Bock telescope

 Chinese led project) => not sensitive enough, did not
 improved target selection
- With DECam Survey => ultimately used for the ELG survey postponing the ELG survey start

3rd Spectrograph (first BigBOSS spectrograph)

 Idea to go from I'000 to I'500 fibres => plate test validated, but procurement of a spectrograph + installation in a separate building was judge too risky

Galaxy Survey workflow

Survey design: sky footprint, imaging, target selection
 Get redshifts: spectroscopic observations, 1D-spectrum reduction, redshift fitting

3. Clustering: LSS catalogues, correlation function
4. Model fitting: analysis validation, systematics estimation, cosmological parameters

Mock catalogues: covariance matrix, analysis validation

Completed eBOSS survey

eBOSS/ELG: Large-Scale Structures Catalogues

•LSS Catalogues

- ✓ 3D-position (R.A., Dec., zspec) for ELGs with 0.6 < zspec_reliable < 1.1
- \checkmark 3D-position of randoms with no clustering
- \checkmark Weights to correct for observational effects
- \checkmark Input for the clustering measurement

Corrections for

- ✓ Redshift failures
- \checkmark Systematics from target selection
- ✓ Angular-radial correlation (ELG-specific)

20 years of SDSS mapping

Credit: Anand Raichoor

Cosmic Variance Evaluation

© Cheng Zhao

EZmock: density map

eBOSS multi-tracer mocks © Cheng Zhao

Jean-Paul Kneib - eBOSS- Action Dark Energy - October 13th, 2020

eBOSS survey geometry

© Cheng Zhao

Tracer distribution comparison

SDSS: BAO and RSD Measurements

Clustering and Covariance

wCDM cosmology

- BAO-only offer tighter constraints than SNe-only
- Degeneracies well-aligned for SNe+CMB
 - SNe+CMB vs BAO+CMB: I.2X better in Ω_{Λ} ; I.5X in w

Jean-Paul Kneib - eBOSS- Action Dark Energy - October 13th, 2020

Constraints from ow0waCDM

- Complementarity of BAO and SNe la → tight constraints of curvature and the dark energy equation of state
- Dark Energy Task Force Figure of Merit of 103
- FoM=150 predicted by DETF at conclusion of Stage-III

Cosmology results

- Stage-II (2010): WMAP + SNe + SDSS/2dFGRS BAO
- **SDSS:** 50x improvement in curvature/H0/sigma8/w0/neutrino mass relative to Stage-II
 - largest improvements in curvature, H0, and neutrino mass precision
 - Stage-II + SDSS: $H_0 = 67.6 + 0.9 \text{ km/s/Mpc}$
- Planck+Pantheon+DES: additional 20x improvement

H₀ tension ?

- H₀ from BAO $\rightarrow \sim 10\%$ smaller error than those from Cepheid distance ladder + strong-lensing time delays.
- "H₀ tension" not restricted to systematic errors in Planck or to the strict assumptions of the LCDM model \rightarrow new physics?

Alam et al 2020

Jean-Paul Kneib - eBOSS- Action Dark Energy - October 13th, 2020

What's Next?

- DESI 35 millions redshift (0<z<1.5 + QSOs)
 - <u>10x better than BOSS/eBOSS</u>
 - back online in Nov 2020
 - Survey start in Spring 2021
 - Complete survey in 2026?
- EUCLID 50 million redshift (I < z < 2)</p>
 - Low resolution infrared spectroscopy
 - Launch end of 2022?
 - End of nominal survey 2027?
- 4MOST 10 million redshift (0<z<1 +QSOs)
 - The "DESI" of the Southern Sky
 - First Light in 2023
 - End of nominal survey 2028

FUTURE Massive Spectroscopic Surveys

Massive Spectroscopic Surveys

What's Next?

Dodelson et al 2016

- **Then?** Dark Energy Stage V?
- What Science?
 - DE model
 - DM "temperature"
 - Sum of neutrinos mass with precision
 - Detection of primordial non-Gaussian fluctuation (f_{NL})
 - ...
- Projects:
 - MSE ambitious enough to gather funding?
 - ESO-SpecTel E-ELT first!
 - Megammaper/SSST Decadal survey/ funding?
 - SKA (HI mapping) Big challenge!
 - GAUSS?

- 6.5m telescope (2 Magellan blank mirror unused)
- Wide field corrector
- 20'000 fiber robots
- ~32 spectrographs if reusing DESI concept (16 exist)

Instrument (year)	Primary/m ²	Nfiber	Reflections	Product	Speed vs. SDSS
SDSS (1999)	3.68	640	0.9^{2}	1908	1.00
BOSS (2009)	3.68	1000	0.9^{2}	2980	1.56
DESI (2019)	9.5	5000	0.9^{1}	42,750	22.4
PFS (2020)	50	2400	0.9^{1}	108,000	56.6
4MOST (2022)	12	1624	0.9^{2}	15,800	8.3
MegaMapper	28	20,000	0.9^{2}	454,000	238.
Keck/FOBOS	77.9	1800	0.9^{3}	102,000	53.6
MSE	78	3249	0.9^{1}	228,000	119.
LSSTspec	35.3	8640	0.9^{3}	222,000	116.
SpecTel	87.9	15,000	0.9^{2}	1,070,000	560.

MegaMapper

Massive Spectroscopic Surveys

Megamapper/SSST

- 6.5m telescope
- ~20'000 fiber robot
 positionner (6mm diameter)
- 30-40 spectrographs
- 200'000+ spectra

Conclusion

- eBOSS completed a 20 year legacy of SDSS redshift surveys
- Stage III Dark Energy experiment are now being finalised (still missing final DES results)
- Cosmological model converging to Lambda-CDM
- But H₀ tension => sign of new physics???
- New Stage IV about to start
- Plan ahead for Stage V surveys?

Beyond Galaxy Clustering?

Delaunay Tetrahedra Voids (or Spheres)

Red: centres of voids

cosmology independent

~10 minutes for 5.5 million haloes with one CPU core >1000 times faster than some traditional finders

DT Voids in SDSS-III/BOSS

BOSS DR12 DT voids

Red: Luminous red galaxies

Blue: DT voids

Cheng Zhao+ 2020

[Galaxy+DT Voids] Clustering

Stronger BAO ! ~10% better

