GPU usage plans

Giulio Dujany

IPHC - CNRS Belle II France computing workshop

Deep learning

- Highly successful for complex problems characterised by a hierarchical representation of the data (machine vision, natural language processing, web searches ...)
- Allows good performances using "raw variables" without needing "optimal variables" defined by domain experts
- Increasing role of deep learning in particle physics
- Interest in the French Belle II groups to start exploring the usage of deep learning to tackle our problems
- Need to use GPUs to reduce the training time

The main problem we want to tackle

- Study B decays with invisible particles in the final state
- Not possible to reconstruct the *B* directly its final state particles: need to reconstruct the other B_{tag} coming from the $\Upsilon(4S)$ decay to close the kinematics
- This is a complex problems characterised by a hierarchical representation of the data as the *B* can decay in thousands of different ways

How we want to solve it (1)

- Use DNN to fully reconstruct the decay of the *B*_{tag} from its final state particles without coding explicitly the possible decay modes
- A particularly promising DNN architecture we want to explore is the Graph Network [Battaglia et al., arXiv:1806.01261]
- Study benefit over algorithm based on BDT already used in Belle II

In Strasbourg an ANR project submitted on this topic plus a M2 stage in collaboration with KIT starting later this year

How we want to solve it (2)

- Reconstruct only the decays $B_{\text{tag}} \rightarrow D^0 X$ exploiting the large branching fraction
- Study X with a DNN to separate B decays from background
 - presence of leptons, kaons, π⁰, clusters, ...

	$\mathbf{B}^{+} \rightarrow$	$B^0 \rightarrow$
D ⁰ X	$(8.6 \pm 0.7)\%$	$(8.1 \pm 1.5)\%$
D ⁰ X	$(79 \pm 4)\%$	(47.4±2.8)%
$\mathbf{D}^{+}\mathbf{X}$	$(2.5 \pm 0.5)\%$	(< 3.9%)
$\mathbf{D}^{-}\mathbf{X}$	$(9.9 \pm 1.2)\%$	(36.9±3.3)%
$\mathbf{D}_{\mathbf{s}}^{+}\mathbf{X}$	$(7.9 \pm 1.4)\%$	$(10\pm 2)\%$
$\mathbf{D}_{\mathbf{s}}^{-}\mathbf{X}$	$(1.10 \pm 0.40)\%$	(< 2.6%)
$\Lambda_{c}^{*} \mathbf{X}$	$(2\pm 1)\%$	(< 3.1%)
$\Lambda_{c}^{-}X$	$(3 \pm 1)\%$	$(5.0 \pm 2.0)\%$

At IJC Lab a postoc and a PhD student plan to work on this

Other projects also possible

- signal/background discrimination
- muon identification
- ...

Requests for 2020

- Guesstimated 1800 hours of GPU time (accessing the batch queues)
- Plan to use GPUs only for deep learning so do not plan to code in CUDA ourself but use dedicated python library (probably Keras/Tensorflow, may have a look at pytorch if available)

WARNING

- We do not have much experience yet so for this first year we made an educated guess.
- Your feedback is more than welcome!
- This year's experience will help coming up with a more accurate estimate for next year

Thanks to Aresh Vedaee and Renaud Vernet for their help!

BACKUP

General graph network processing pipeline

Edge block

For each edge, $\mathbf{e}_k, \mathbf{v}_{s_k}, \mathbf{v}_{r_k}, \mathbf{u}$, are passed to an "edge-wise function": $\mathbf{e}'_k \leftarrow \phi^e \left(\mathbf{e}_k, \mathbf{v}_{r_k}, \mathbf{v}_{s_k}, \mathbf{u}\right)$

Node block For each node, $\mathbf{\bar{e}}'_i, \mathbf{v}_i, \mathbf{u}$, are passed to a "node-wise function": $\mathbf{v}'_i \leftarrow \phi^v (\mathbf{\bar{e}}'_i, \mathbf{v}_i, \mathbf{u})$

Global block

Across the graph, $\bar{\mathbf{e}}', \bar{\mathbf{v}}', \mathbf{u}$, are passed to a "global function": $\mathbf{u}' \leftarrow \phi^u (\bar{\mathbf{e}}', \bar{\mathbf{v}}', \mathbf{u})$

B-tagging...

standard tagging methods: hadronic and semi-leptonic other possibilities ? semi-inclusive, a.k.a c-tag... signal side: K+2 leptons (especially K t) allows looser selection in B_{tag} side ? \Rightarrow flavour tagging combines information as charge/momentum of lepton, charge of kaon, charge of soft pionetc... \Rightarrow output (qr): B or \overline{B} \Rightarrow B-tagging... but better to talk about charged B tag or neutral B tag

	B⁺→	$B^0 \rightarrow$
$\mathbf{D}^{0}\mathbf{X}$	(8.6±0. 7)%	(8.1±1.5)%
$\overline{\mathbf{D}}^{0}\mathbf{X}$	(79±4)%	(47.4±2.8)%
D ⁺ X	(2.5±0.5)%	(< 3.9%)
D-X	(9.9±1.2)%	(36.9±3.3)%
D_s^+X	(7.9±1.4)%	(10±2)%
D- X	$(1.10 \pm 0.40)\%$	(< 2.6%)
$\Lambda_c^* X$	(2±1)%	(< 3.1%)
$\Lambda_c^- X$	(3±1)%	(5.0±2.0)%

∘ $B^+ \rightarrow \overline{D}^0 X$ BR is high

- − reconstruct exclusively D^0 (20%~ $\epsilon \times BR$, D→K π , K $\pi \pi^0$, K3pi, K_S $\pi \pi$, KK...), p_{CM}...
- exploit 'Dalitz' properties of $D\!\!\rightarrow\!\!K\,n\,\pi$
- $\circ~D^*$ would be a veto !
- $\circ \ D_s^*: additional \ info \ (but \ BR(D_s \rightarrow \phi(K^*K^-)\pi) \sim 2.3 \ \% \ only), \ \phi + D^0 \ ? \ (BR(D_s \rightarrow \phi(K^*K^-)X) \sim 8 \ \% \ W^*K^*) = 0$
- $\circ \text{ in fact think as } B^{\star} \rightarrow \overline{D}{}^{0}[\mu \nu] X, \rightarrow \overline{D}{}^{0}[e \nu] X, \rightarrow \overline{D}{}^{0}[c \overline{s}] X \text{ (here } \overline{D}{}^{0}D_{s} X \text{ or } \overline{D}{}^{0}\phi X), \overline{D}{}^{0}[u \overline{d}] X$
- $\circ~$ not forgetting $B^{*} \! \rightarrow \! J/\psi \, K \, X \; (K^{*} \text{ and } K^{0}_{S})$
- $\circ~$ study of X : presence of leptons , kaons , π^0 , clusters ... $\Rightarrow~BDT$, DNN ...
- $\Rightarrow~$ charged Btag info with a quality information , \neq neutral Btag algorithm