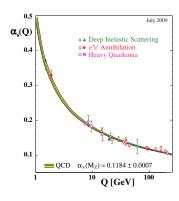
Panorama théorique

Samuel Wallon

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie

CNRS / Université Paris Saclay

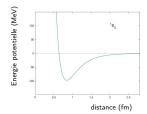

Orsay

et

Sorbonne Université

Exercice de prospective nationale
en physique nucléaire, physique des particules et astroparticules
Séminaire Thématique du GT03 - Physique hadronique
2 mars 2020
SUBATECH, Nantes

Liberté asymptotique et confinement


$$\alpha_s = \frac{g^2}{4\pi}$$

couplage $\alpha_s(Q)\ll 1$ (Q= énergie typique) pour $Q\gg \Lambda_{QCD}\simeq 200\,MeV$ soit distance $\sim 1/Q\ll 1$ fm

Pourquoi suis-je beaucoup plus lourd que les quarks qui me constituent?!?

- Le mécanisme de Brout-Englert-Higgs (BEH) explique la masse des leptons et des quarks
- Mais environ 95 % de la masse de l'univers visible est due à QCD! $m_{\rm electron} \ll m_{\rm quarks~u,d} \sim 1/200~m_{\rm proton}$
- Physique nucléaire:

$$\Rightarrow m_{\stackrel{A}{Z}X} < Z m_{\text{proton}} + (A - Z) m_{\text{neutron}}$$

• QCD: $E_p \sim -\frac{4}{3} \frac{\alpha_s}{r} + k r$: terme linéaire (confinement) à grande distance Les gluons jouent ici un rôle essentiel

 $\Rightarrow m_{
m proton} \gg m_{
m quarks}$ u,d

QCD joue un rôle central en physique des particules

Collision d'ions lourds

- L'étude du secteur du boson BEH (découvert en 2012 au LHC)
- La physique de la saveur ex: pourquoi $m_u \sim m_d \ll m_s \ll m_c \ll m_b \ll m_t$?
- L'étude des rayons cosmiques d'ultra haute énergie
- La recherche de physique au-delà du modèle standard ex: supersymétrie fermions/bosons?

exigent un contrôle précis des effets de QCD

De nombreuses questions en QCD restent ouvertes

QCD est une théorie très non-linéaire, à la phénoménologie très riche

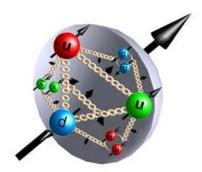
physique nucléaire

de l'interaction quark-quark à l'interaction nucléon-nucléon?

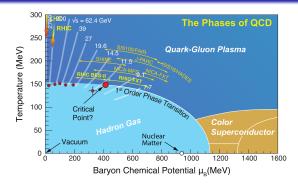
- analogue des forces de London entre molécules neutres électriquement
- ici les hadrons sont neutres de couleur
- force résiduelle?
- hors de portée analytiquement et même numériquement
- physique du plasma quark-gluon
 - si l'on chauffe suffisamment noyau, peut-on créer un état déconfiné?
 - collision noyau-noyau (LHC)
 - quels sont les signaux de formation?
- physique hadronique: comprendre les caractéristiques des hadrons
 - Masse
 - Spin
 - Charge
 - ...

De nombreuses questions en QCD restent ouvertes

QCD est une théorie très non-linéaire, à la phénoménologie très riche


- physique nucléaire
 - de l'interaction quark-quark à l'interaction nucléon-nucléon?
 - analogue des forces de London entre molécules neutres électriquement
 - ici les hadrons sont neutres de couleur
 - force résiduelle?
 - hors de portée analytiquement et même numériquement
- physique du plasma quark-gluon
 - si l'on chauffe suffisamment noyau, peut-on créer un état déconfiné?
 - collision noyau-noyau (LHC)
 - quels sont les signaux de formation?
- physique hadronique: comprendre les caractéristiques des hadrons
 - Masse
 - Spin
 - Charge
 - <u>a</u>

En termes des briques élémentaires colorées: quark, gluons

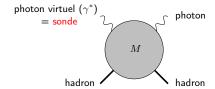

L'interaction forte Et le spin?

Le puzzle du spin du proton

Le proton est de spin 1/2

- Les quarks sont de spin 1/2
- Les gluons sont de spin 1
- Les quarks et les gluons ont un moment orbital
- Quelle est la contribution de chacune de ces composantes au spin total?

- cross-over phases hadronique \leftrightarrow QGP, à $\mu_B=0$ et $Tc=154\pm9$ MeV.
- transition du premier ordre attendue à plus petit T et μ_B assez élevé
- point critique attendu, où s'arrête le régime de transition de phase du premier ordre.
- à très grand μ_B , d'autres phases sont attendues (super conductivité de couleur, avec formation de paires de Cooper quark-quark, au sein des noyaux d'étoiles à neutrons)


Ce diagramme est pour l'essentiel inconnu, théoriquement et expérimentalement.

Factorisation courte distance/longue distance

Que faire avec QCD?

exemple: diffusion Compton

source de γ^* = faisceau d' e^{\pm} , de μ^-

- Objectif: décrire M (amplitude de diffusion) en séparant:
 - des quantités non-calculables perturbativement $\alpha_s \sim 1$
 - discrétisation de QCD sur un réseau 4-d: simulations numériques
 - correspondance AdS/QCD
 - des quantités calculables perturbativement $\alpha_s \ll 1$

Collision d'ions lourds

Secteur fortement couplé de QCD QCD sur réseau

$$T = \mu_B = 0$$

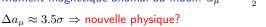
• Mesure de α_S en schéma MOM

Vertex gluon-fantôme-fantôme nu: $\sum_{b \to \infty} \frac{1}{c} \sum_{c \to c} -g_s f^{abc} p^{\mu}$ Corrections de QCD au vertex nu: $Z_g = \frac{\tilde{Z}_1}{\tilde{Z}_3^{1/2} \tilde{Z}_3^{1/2} Z_3^{1/2}}$ Vertex gluon-fantôme-fantôme nu:

Miracle: dans la limite où l'impulsion du fantôme entrant s'annulle, $\tilde{Z}_1=1$ Dans le schéma MOM, seuls les corrélateurs à deux points sont nécessaires: meilleur contrôle du signal

- Spectroscopie (y compris quarkonia)
- Eléments de matrice pour la physique de précision (secteur de la saveur et recherche de nouvelle physique): Facteurs de forme associés aux désintégration du B

$$R_{D^{(*)}} = \frac{\Gamma(B \to D^{(*)} \tau \nu_\tau)}{\Gamma(B \to D^{(*)} \ell \nu_\ell)_{\ell=e,\mu}} \text{ et } R_{K^{(*)}}\text{, } \ R_{J/\psi}$$



Secteur fortement couplé de QCD

QCD sur réseau

$$T = \mu_B = 0$$

• Moment magnétique anomal du muon: $a_{\mu} = \frac{(g-2)_{\mu}}{2}$

2 classes de corrections QCD:

polarisation du vide

diffusion lumière-lumière

- Amplitudes de diffusion $2 \to 2$:
 - approche directe impossible: on ne peut définir les états asymptotiques qui interagissent touiours
 - méthode de l'ellouch-l'iischer basée sur les effets de taille finie Exemple: $\pi\pi \to \pi\pi$
- Très récents progrès sur la détermination des PDFs: pb: sur le réseau, on ne peut se mettre sur le cône de lumière ⇒ quasi-PDFs et pseudo-PDFs permettant d'extraire ensuite les PDF pseudo-PDFs: séparation de type space-like futur: extraction d'autres distributions

DAs, GPDs (y compris de transversité), TMDs

Secteur fortement couplé de QCD QCD sur réseau $T \neq 0$

- QCD sur réseau à $\mu_B=0$: accès à une partie du diagramme de phase mise en évidence d'une transition de phase (mesure de T_c)
- Très difficile de quitter la limite $\mu_B = 0$:
 - Fonction de partition grand canonique: $Z={
 m Tre}^{-({
 m H}-\mu{
 m N})/{
 m T}}={
 m e}^{-{
 m F}/{
 m T}}$
 - Sur le réseau: $Z = \int DUD\bar{\psi}D\psi e^{-S} = \int DU e^{-S_{YM}} \det M(\mu)$, U: lien de jauge; $\psi, \bar{\psi}$ champs de quark

action QCD:
$$S = S_{\rm YM} + \int d^4x \, \bar{\psi} M \psi$$
.

- Simulations: $\rho(U) \sim e^{-S_{YM}} \det M(\mu) = \text{distribution de probabilité}.$
- "Problème du signe":

$$[\det M(\mu)]^* = \det M(-\mu^*) \in \mathbb{C}.$$

Pour $\mu \neq 0$, $\rho(U)$ est complexe.

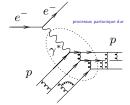
Ceci est lié au principe de Pauli: la fonction d'onde change de signe par echange de deux fermions ⇒ l'intégrale sur les fermions est très oscillante sauf s'il y a autant de particules que d'antiparticules (i.e. $\mu=0$).

Approches non perturbatives Correspondance AdS/CFT et AdS/QCD

- correspondance entre
 - une théorie des cordes définie sur un espace anti de Sitter (espace à courbure négative constante) $AdS_5 \times S^5$
 - une théorie des champs conforme supersymétrique N=4 à 4 dimension, définie sur la frontière de l'espace de la théorie des cordes
- dualité entre les fonctions de corrélation définie dans chacune des deux théories
- QCD n'est pas invariante conforme (les masses brisent l'invariance d'échelle) QCD = théorie asymptotiquement libre \Rightarrow analogie crédible
- régime faiblement couplé de la théorie des cordes
 - - processus exclusifs et inclusifs, physique à petit x prédictabilité modérée ($\approx 30\%$)
 - pour QGP: dualité avec une théorie des trous noir ⇒ prédiction de

$$\frac{\eta}{s} = \frac{\hbar}{4\pi k_B}$$

résultat expérimental proche de cette borne inférieure:


QGP = fluide parfait fortement couplé

Les outils théoriques Factorisation courte distance/longue distance

Factorisation

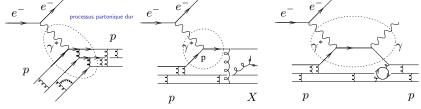
- Objectif: réduire le processus à l'interaction d'un petit nombre de partons (quarks, gluons), malgré le confinement
- Ceci est possible si le processus est gouverné par des phénomènes à courte distance ($d \ll 1 \, \text{fm}$)
 - $\implies \alpha_s \ll 1$: méthodes perturbatives
- Il faut pour cela heurter un hadron suffisamment violemment

Exemple: facteur de forme du proton (collision élastique $e^-p \to e^-p$

au interaction électromagnétique $\sim au$ temps de vie du parton après l'interaction $\ll au$ temps caractéristique de l'interaction forte

Collision d'ions lourds

on parle alors de processus dur.

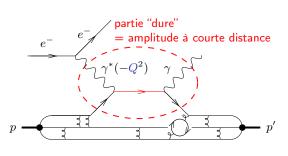

عمدية العرابية

Introduction

Les outils théoriques Factorisation courte distance/longue distance

Factorisation

- Il faut pour cela une échelle dure:
 - Virtualité de la sonde électromagnétique
 - diffusion élastique $e^{\pm} p \rightarrow e^{\pm} p$
 - diffusion profondément inélastique (DIS) $e^{\pm} \ p \rightarrow e^{\pm} \ X$
 - diffusion Compton virtuelle (DVCS) $e^{\pm} p \rightarrow e^{\pm} p \gamma$
 - diffusion profondément inélastique semi-inclusive (SIDIS)
 - $e^{\pm} \ p \rightarrow e^{\pm} \ \mathsf{hadron} \ p \ X$
 - Energie totale dans le centre de masse en annihilation $e^+e^- \to X$
 - Production d'un méson lourd
- amplitude = convolution du contenu partonique du hadron avec une amplitude perturbative


Les outils théoriques

Factorisation courte distance/longue distance

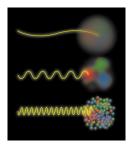
factorisation "colinéaire" de l'amplitude de diffusion du processus DVCS

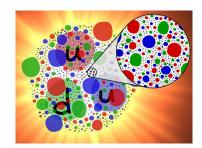
$$M = \operatorname{amplitude} \operatorname{courte} \operatorname{distance} \otimes \operatorname{contenu} \operatorname{non-perturbatif} \operatorname{du} \operatorname{hadron}$$

Diffusion Compton profondément virtuelle:

Distribution de Partons Généralisée (GPD)

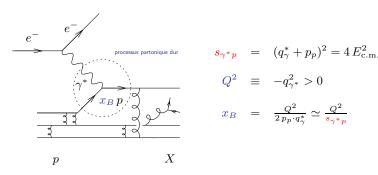
photon virtuel $\gamma^* = \text{sonde}$


Production de quarkonium en NRQCD


- Formalisme QCD non relativiste (NRQCD) Bodwin, Braaten, Lepage; Cho, Leibovich
- Preuve de la factorisation NRQCD: NLO Nayak Qiu Sterman 05; à tous les ordres Nayak 15.
- Développement de l'état onium (i.e. $Q\bar{Q}$ lourd) en puissances de la vitesse $v \sim \frac{1}{\log M}$ de ses constituants:

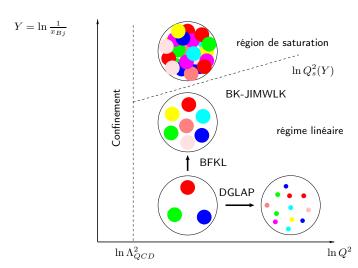
$$\begin{split} &|J/\psi\rangle = O(1) \Big| Q\bar{Q}[^3S_1^{(1)}] \Big\rangle + O(v) \Big| Q\bar{Q}[^3P_J^{(8)}]g \Big\rangle + O(v^2) \Big| Q\bar{Q}[^1S_0^{(8)}]g \Big\rangle + \\ &+ O(v^2) \Big| Q\bar{Q}[^3S_1^{(1,8)}]gg \Big\rangle + O(v^2) \Big| Q\bar{Q}[^3D_J^{(1,8)}]gg \Big\rangle + \dots \end{split}$$

- toute la physique non-perturbative est codée dans les éléments de matrice à longue distance (LDME) tirés de $|J/\psi\rangle$
- partie dure (série en α_s): obtenue par développement usuel en diagrammes de Feynman
- section efficace = convolution (partie dure) $^2 \otimes LDME$
- ullet En NRQCD, Q et $ar{Q}$ se partagent l'impulsion du quarkonium: $p_V=2q$
- L'importance relative des contributions singulet versus octet de couleur est toujours l'objet de discussions.


Voir l'intérieur d'un proton avec une sonde électromagnétique

les détails visibles sont directement reliés à la longueur d'onde de la sonde utilisée

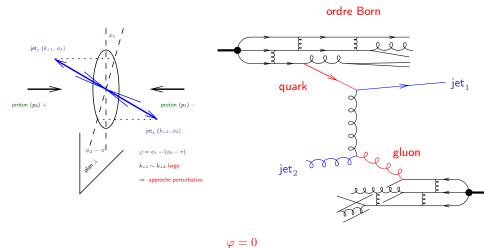
La diffusion profondément inélastique


modèle de Bjorken-Feynman 1969

- x_B = fraction de l'énergie-impulsion du proton transportée par le quark
- \bullet 1/Q= résolution transverse de la sonde électromagnétique $\ll 1/\Lambda_{QCD}$

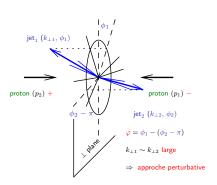
DIS

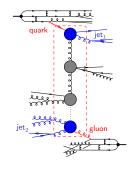
Le contenu en quark et gluon du proton


Les différents régimes gouvernant le contenu perturbatif du proton

Haute énergie: limite de Regge Regime linéaire perturbatif BFKL

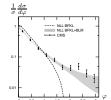
Introduction


Jets Mueller-Navelet (1987) aux collisionneurs $pp(\bar{p})$



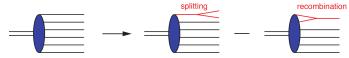
Haute énergie: limite de Regge Regime linéaire perturbatif BFKL

Introduction


Jets Mueller-Navelet (1987) aux collisionneurs $pp(\bar{p})$

LHC: très grande énergie disponible!

émission de nombreux partons semi-durs, avec un coût énergétique faible $\Rightarrow \text{large section efficace} + \text{décorrélation} \\ \frac{\text{donc } \varphi \neq 0}{\text{donc } \varphi \neq 0}$



Haute énergie: limite de Regge Régime non-linéaire perturbatif et CGC

Introduction

Physique de la saturation gluonique

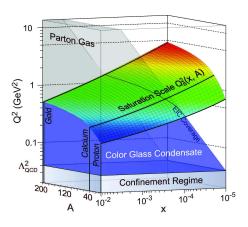
Collision d'ions lourds

- $\alpha_s \ll 1$: couplage faible \Rightarrow approache perturbative
- système très dense: très grands nombres d'occupation les gluons peuvent se recombiner
- échelle caractéristique: saturation pour $Q^2 \leq Q_s^2(x)$
 - nombre de gluons par unité de surface:

$$\rho \sim \frac{xG_A(x,Q^2)}{\pi R_A^2}$$

section efficace de recombinaison:

$$\sigma_{gg \to g} \sim \frac{\alpha_s}{O^2}$$


• les effets de recombinaison importants pour $\rho \, \sigma_{qq \to q} \gtrsim 1$

i.e.
$$Q^2\lesssim Q_s^2$$
 avec $Q_s^2\sim {\alpha_s\ xG_A(x,Q_s^2)\over \pi R_A^2}\sim A^{1/3}x^{-0.3}$

Saturation gluonique Futur expérimental

Les outils théoriques

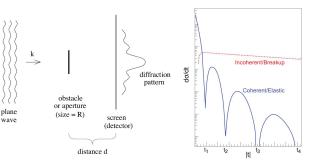
Saturation gluonique dans le domaine perturbatif

 A EIC, l'échelle de saturation Q_s sera dans le régime perturbatif

$$Q_s^2 \sim \left(\frac{A}{x}\right)^{1/3}$$

- Energie dans le centre de masse modérée
- Compensée par A qui peut être grand
- Large région perturbative

$$\Lambda_{QCD}^2 \ll Q^2 \ll Q_s^2$$


dans laquelle la saturation est sous contrôle

Les outils théoriques

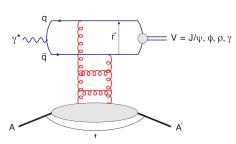
Diffraction

Diffraction sur un noyau

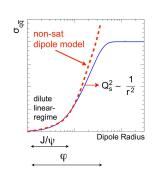
Collision d'ions lourds

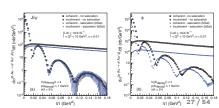
diffraction cohérente: le noyau reste intact

diffraction incohérente: le noyau se casse, les nucléons restent intacts


- ullet la figure diffractive contient de l'information sur la taille R de l'obstacle et sur son opacité optique
- ullet en optique, fonction de heta
- en physique des hautes énergies, $t = -(k \sin \theta)^2$

Diffraction sur un noyau diffraction inclusive




Diffraction sur un noyau Production d'un état exclusif: méson

Collision d'ions lourds

- la section efficace dipolaire $\sigma_{q\bar{q}}(r)$ sature dans la limite disque noir
- la taille du méson peut servir de filtre:
 - J/ψ de petite taille ⇒ dominé par le régime linéaire
 - ϕ , ρ de petite taille ⇒ importante contribution du régime non-linéaire saturé

Saturation gluonique à l'ordre NLO

Mettre en évidence de façon indiscutable les effets de saturation gluonique, à l'œuvre dans le condensat de verre de couleur (CGC), exige un traitement complet à l'ordre NLO

• Approche "onde de choc": dans le référentiel de la sonde, le champ gluonique échangé est localisé à l'origine des temps $x^+=0$

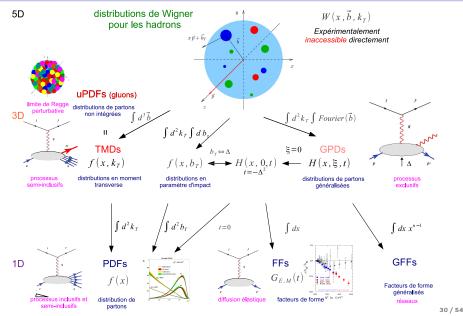
(sur le cône de lumière)

⇒ théorie effective

- L'évolution du CGC est maintenant connue à l'ordre NLO
- Les premiers facteurs d'impact (couplage CGC-sonde) ont récemment été menés à l'ordre NLO (production de dijets, méson)

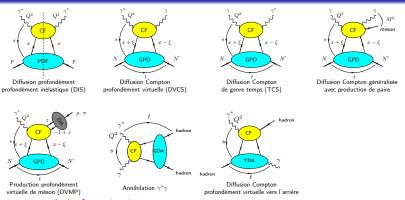
 $k^{+} > e^{-Y}p^{+}$ $k^{+} < e^{-Y}p^{+}$ $|P'\rangle$

séparation en rapidité entre modes quantiques et classiques production diffractive d'un dijet

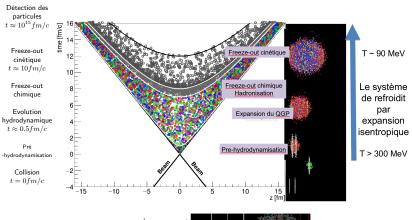

Le contenu en quark et gluon du proton Au-delà de DIS

Accéder aux distributions multidimensionnelles en quark et gluons pour les hadrons? Information 5-dimensionnelle

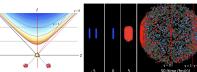
Le contenu en quark et gluon du proton Le tableau ultime


Introduction

Complémentarité des projets


Le contenu en quark et gluon des nucléons... et des noyaux De DIS aux processus exclusifs

Introduction



- test de la factorisation (et de l'universalité des distributions non perturbatives)
- complémentarité des processus afin d'extraire les GPD
- nécessité de contrôler les corrections radiatives (NLO) et les corrections en puissance (ex: DVMP en π^0)
- le secteur de la transversité est particulièrement difficile d'accès
- l'extension aux noyaux est très prometteuse
- il est essentiel d'étendre le domaine cinématique: en ξ , en t, en Q^2 : JLab, COMPASS, ... LHC en UPC, EIC

Modèle standard d'une collision

temps propre fixé rapidité y fixée

gouttes de QGP

Sondes molles et sondes dures

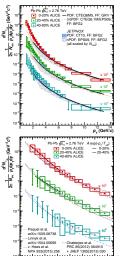
- partie molle du spectre en p_T : distribution thermique, flot hydrodynamique
- partie dure: physique des jets, quarkonia, etc.

En pratique:

aux énergies du LHC, 98% des particules sont produites pour un $p_t < 2$ GeV 80% pions, 13% kaons, 4% protons

⇒ QCD perturbative inapplicable dans la plupart des situations. Ceci n'interdit pas une approche théorique...

C'est la grande différence avec le monde des sondes électromagnétiques.

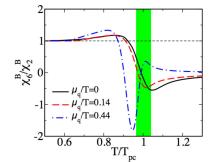

Spectre des γ directs

- γ interagit faiblement avec le QGP, donc spectre gouverné par le début de la collision
- contribution des photons durs dominée par pQCD

• excès dans le spectre à bas p_T des γ émis pendant l'expansion hydrodynamique du QGP, pour les collisions centrales

$$\frac{dN}{dp_T} \approx \exp[-p_T/T]$$

- T = 297 + 12 + 41 MeV LHC RHIC: T = 220 à 240 MeV
- possible d'étudier le spectre des γ^* produit par annihilation des $q\bar{q}$ du milieu \Rightarrow spectre en dileptons


Collisions d'ions lourds

Introduction

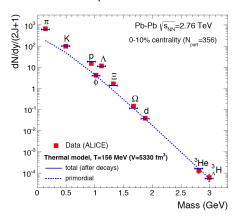
Symétrie chirale

Restauration de la symétrie chirale

- QCD sur réseau: restauration de la symétrie chirale ↔ déconfinement: même température sur le réseau ce n'est pas a priori un conséquence des premiers principes
- vérification/test expérimental: symétrie chirale: fluctuation événement par événement des charges conservées de QCD (nombre baryonique, étrangeté, charge électrique)

étude des cumulants χ_n de $N_p-N_{\bar{p}}$ (skewness, kurtosis, ...)

Collision d'ions lourds

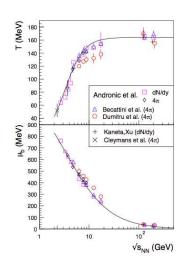

Preuve expérimentale que les deux températures sont identiques

Collisions d'ions lourds Equilibre chimique

Equilibre chimique

équilibre chimique sur les produits de réaction: excellente description, sur 7 ordres de grandeur, avec T_{ch} de freeze-out chimique \approx 156 MeV

 \Rightarrow extraction de T et μ_B par ajustement de la distribution de Boltzmann sur la distribution des produits de réaction

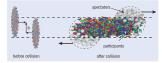


$$\frac{dN}{du} \approx \exp[-m/T_{ch}]$$

(en détail, s'obtient à partir de la fonction de partition)

Collisions d'ions lourds Equilibre chimique

Scan en T et μ_B par scan en s_{NN}



- la ligne de freeze-out est observée
- à très grand s, $T_{ch}|_{max} \simeq 160 \text{ MeV}$ proche de la valeur QCD sur réseau
- frontières
 - à haute énergie: LHC (CMS, ALICE, LHCb, ATLAS, NA-61)
 - à basse énergie: Programme Beam Energy Scan (BES) à RHIC et scan possible dans le futur à FAIR et NICA.

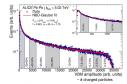
Collision d'ions lourds Cinématique: paramètre d'impact

Modèle de Glauber (Bialas, Biezynski, Czyz) multiplicité ←→ paramètre d'impact

hypothèses:

Introduction

- noyau caractérisé par la distribution des nucléons
- les nucléons se déplacent en ligne droite
- les nucléons restent intacts après collision
- pas d'effet d'interférence quantique
- probabilité d'interaction entre nucléons donnée par σ_{pp}

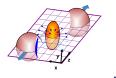

simulation Monte Carlo ⇒ connaissance (statistique) de:

- N_{part} (nombre de nucléons participants)
- N_{coll} (nombre de collisions entre nucléons) \propto multiplicité

les spectateurs peuvent également être utilisés (via les détecteurs à angle nul)

Hydrodynamique relativiste Cadre théorique

repose sur l'hypothèse d'un équilibre thermodynamique local (≠ global)

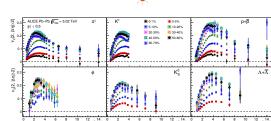

$$\partial_{\mu}T^{\mu\nu} = 0$$
 conservation du tenseur energie-impulsion

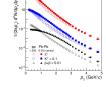
$$\partial_{\mu}j_{B}^{\mu}(x) \ = \ 0$$
 conservation du nombre baryonique

- 5 équations indépendantes, 6 variables:
 - densité d'énergie $\epsilon(x)$
 - densité d'impulsion P(x)
 - vitesse du fluide $\vec{v}(x)$
- rôle important des effets dissipatif
 - ⇒ termes supplémentaires dans le membre de droite, qui font intervenir les viscosités de cisaillement η et de volume ζ développement en gradient autour de l'équilibre local
- approche valable dans la limite $Kn = \frac{\ell_{lpm}}{D} \ll 1$: taille du système R grande devant le libre parcours moyen ℓ_{lpm} . Pour un système relativiste, ceci se ramène à:

$$\frac{1}{Kn}\sim Re\gg 1$$
 i.e. η petit: fluide peu visqueux

Hydrodynamique relativiste en action




développement en harmoniques:

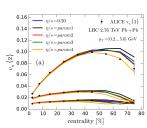
$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} (1 + 2\sum_{n=1}^{\infty} v_{n} \cos[n(\varphi - \Psi_{n})]),$$

flot radial

ALICE (s... = 2.76 TeV flot elliptique

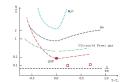
flot radial et flot elliptique v_2 sont:

- maximal aux centralités intermédiaires
- croit avec m $(m_p > m_K > m_\pi)$: effet de boost: $p_T = \beta \gamma m$ avec β universel (flot)
- maximal à grand p_T


Collision d'ions lourds Anisotropie du flot et mesure de la viscosité

Introduction

- Flot elliptique dominé par des contributions provenant du début de la collision:
 - ratio $\frac{v_2}{n_q}$ universel \Rightarrow signe d'une compression initiale du système au niveau des quarks et non des hadrons dans l'état final
 - une approche partonique dure ne suffit pas pour décrire les données
- comparaison expérience/simulations hydrodynamiques:


 v_2 diminue quand η/s augmente (viscosité de cisaillement / taux de production d'entropie) la dissipation fait perdre la mémoire de la géométrie initiale lors de l'expansion hydrodynamique

Complémentarité des projets

 v_2 (haut), v_3 (milieu), v_4 (bas)

Corrélations à deux particules

deux crêtes ("ridges") étalées en $\Delta\eta$

- $\Delta \phi \approx 0$ flot?
- $\Delta \phi \approx \pi$ flot?

- corrélation à deux particules $\propto v_n^2 \cos(n\Delta\phi)$
 - effet collectif?
 - effet provenant de quelques particules?
- Deux types de contributions:
 - contributions venant du flot hydrodynamique: $\Delta \phi \approx 0$ et $\Delta \phi \approx \pi$
 - o contributions ne venant pas du flot hydrodynamique:
 - désintégration des résonances: $\Delta \phi \approx 0$
 - dijet (pic avant-arrière $\Delta \phi pprox \pi$)
 - à bas p_t , conservation de l'énergie-impulsion: $\Delta \phi \approx 0$
- en Pb-Pb, en plus du flot:
 - pic $\Delta\phi \approx \Delta\eta \approx 0$: fragmentation d'un jet, desintégration, etc... localisée dans un cône \Rightarrow facile à isoler par rapport au flot
 - dijet: pic $\Delta \phi \approx \pi$ mais étalement en $\Delta \eta$ du type configuration Mueller-Navelet \Rightarrow difficile à isoler AA: sous-dominant pour $p_T < 5$ GeV
- Pb-p et pp: effets de crête en $\Delta\phi\approx0$ et $\Delta\phi\approx\pi$ très clair, venant du flot 42/54

Hydrodynamique relativiste Applicabilité

différentes estimations permettent d'évaluer

• la température pour que le QGP puisse exister

$$\ell_{lpm} \sim (2 \text{ fm}) \left(rac{T_0}{T}
ight)^3 rac{\sigma_1}{\sigma}$$

- \bullet T = temp'erature du QGP
- $T_0 = 200 \text{ MeV}$ échelle, $\neq T_{transition}$
- σ = section efficace parton-parton
- $\sigma_1 = 1 \text{ mb}$

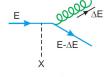
 \Rightarrow pour un gros noyau $R\sim 6-7~\mathrm{fm}$

 $Kn \lesssim 0.1$ pour T jusqu'à environ 200 MeV ou même moins

- la taille minimale d'une goutte de QGP
 - succès du développement en harmonique du flow
 - η/s très petit: ℓ_{lpm} ci-dessus sur-estimé

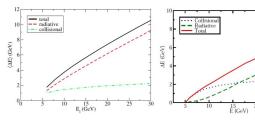
 $R_{OGP} \gtrsim 1 \text{ fm}$

 \Rightarrow pourquoi pas en pp et pA?


Pertes d'énergie des jets

Introduction

Deux types de pertes d'énergie



par collision (domine à bas p_T)

par radiation de type Bremstrahlung (domine à grand p_T)

quark léger (RHIC, centralité 0-5%)

quark lourd (b) (LHC, centralité 0-7.5%)

Pertes radiatives

Collision d'ions lourds

deux paramètres cruciaux:

- temps typique de formation d'une paire $(parton \ g)$: $\tau_f \sim 2\omega/k_\perp^2$ $\omega, k_{\perp} = \text{energie,impulsion transférée}$
- libre parcours moven d'un parton dans le milieu λ

deux régimes typiques:

- $\tau_f < \lambda$: diffusions multiples indépendantes Bethe-Heitler
- $\tau_f > \lambda$: diffusions multiples non indépendantes, traitement quantique ⇒ réduction du spectre par rapport au cas Bethe-Heitler $\Delta E \propto \alpha_S C_R \hat{q} L^2$ L= taille longidudinale du nucleon, $C_R=$ Casimir du parton

le milieu est caractérisé par le coefficient de transport

$$\hat{q} = \frac{d\langle \Delta q_T^2 \rangle}{dL}$$

= transfert moyen d'impulsion² par unité de longueur du milieu traversé

Point commun aux différentes approches théoriques à l'ordre d'une émission:

- traitement eikonal: énergies E (parton entrant) et ω (gluon radié) $\gg q_{\perp}$ (impulsion échangée avec le milieu)
- approximation colinéaire: $\omega \gg k_{\perp}$ (impulsion transverse du gluon émis)
- localisation spatiale du transfert d'impulsion: $\lambda \gg \lambda_{Debye}$

Observables Production simple de hadron et de jets à grand p_T

Collision d'ions lourds

- coefficients de transport
 - û: taux de diffusion du moment transverse
 - ê: taux de perte d'énergie élastique
 - \hat{e}_2 : taux de diffusion de perte d'énergie élastique

mesurer $\frac{T^3}{\hat{s}}$ plutôt que $\frac{\eta}{s}$ est particulièrement important: test de l'intensité du couplage du QGP

conjecture:

$$\frac{T^3}{\hat{q}} = \left\{ \begin{array}{l} \approx \frac{\eta}{s} & \text{faible couplage} \\ \ll \frac{\eta}{s} & \text{fort couplage} \end{array} \right.$$

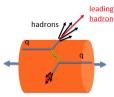
quand et comment un système faiblement couplé de quarks et gluons devient-il un fluide fortement couplé?

mesure:

RHIC:
$$\hat{q} \approx 1.2 \pm 0.3 \text{ GeV}^2/\text{fm T} = 370 \text{ MeV}$$
 LHC: $\hat{q} \approx 1.9 \pm 0.7 \text{ GeV}^2/\text{fm T} = 470 \text{ MeV}$

à comparer à $\hat{q} = 0.02 \text{ GeV}^2/\text{fm}$ pour la matière nucléaire froide

Observables Production simple de hadron et de jets à grand p_T


• facteur de modification nucléaire

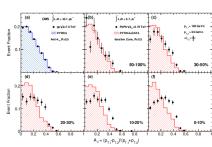
$$R_{AA}^{jet,hadron} = \frac{dN_{AA}^{jet,hadron}/dE_T dy}{N_{coll} dN_{pp}^{jet,hadron}/dE_T dy}$$

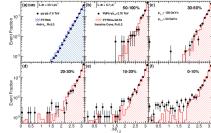
- R_{AA} diminue fortement lors la traversée du milieu nucléaire en collision centrale (0-5%)
- ullet pas d'effet analogue en pA

Introduction

Observables Effets de corrélation entre jet/hadron/photon

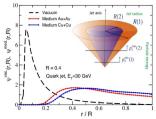
Jet quenching


un jet primaire $p_{T,1} > 120~{\rm GeV/c}$ un jet secondaire $p_{T,1} > 50~{\rm GeV/c}$


rapport d'asymétrie en dijets:

$$A_J = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

- $p_{T,1} \approx p_{T,2} : A_J \approx 0$
- $p_{T,1} \gg p_{T,2} : A_J \approx 1$
- distribution azimutale relative


Effet marqué pour les collisions centrales: pertes dues à la traversée du QGP

Observables

- reconstruction de jets et sous-structure:
 - ullet reconstruction de jets complexe à cause du fond (en comparaison avec pp)
 - p_T broadening: l'interaction d'un jet avec le milieu crée un élargissement de ce jet

- soft drop: on enlève les contributions du type emission molle à grand angle \Rightarrow comparaison avec pQCD facilitée
- observables liées à la perte d'énergie d'un jet: effet sur le milieu, ex. création de tourbillons dans le QGP. Accès à la physique de l'hydrodynamisation?
- développements théoriques actuels:

corrections non-eikonales

- p_T broadening au NLO (cf problème analogue en pA, dans le cadre de la saturation et de BK-JIMWLK):
- lien entre p_T broadening au NLO et sous-structure des jets (par soft-drop)

Evaporation des quarkonia

Ecrantage de l'interaction forte sur Qar Q

Cas du Υ:

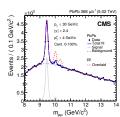
Introduction

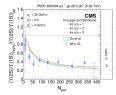
• taille typique des résonances du Υ :

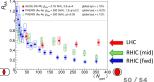
$$r(\varUpsilon(1S)) < r(\varUpsilon(2S)) < r(\varUpsilon(3S))$$

distance typique d'écrantage:

$$d_{Debye} \searrow \mathsf{quand} \ T \nearrow$$


ullet lorsque T_{QGP} est telle que


$$r(\Upsilon(1S)) < d_{Debue} < r(\Upsilon(2S)) < r(\Upsilon(3S))$$


évaporation du $\Upsilon(2S)$) et du $\Upsilon(3S)$ alors que le $\Upsilon(1S)$ reste lié.

dépendance en centralité: effet du QGP

- Cas du J/Ψ :
 - effet supplémentaire: les paires $c\bar{c}$ produites dans le milieu régénèrent des J/Ψ au moment de l'hadronisation
 - suppression plus faible au LHC qu'à RHIC!

Complémentarité ep/eA et pp, pA, AA

Physique ultrapériphérique LHC

Collision d'ions lourds

Un ion lourd peut aussi servir de source de photon: grand $A \Rightarrow$ grand Z: charge élevée

- par Fourier, grand $b \longleftrightarrow petit t$:
 - suppression des contributions par échange hadronique (pomeron, odderon, etc.)
 - ullet dominance du pic coulombien du γ
- accès à un très grand nombre potentiel d'observables, dans un nouveau domaine cinématique
 - processus exclusifs: TCS, diffraction (meson, dijets, paire γ -meson, quarkonia)
 - ullet interface régime colinéaire / physique à petits x

Complémentarité ep/eA et pp, pA, AA

pp, pA, AA: étude du diagramme de phase de QCD

combine à la fois des effets sur l'état initial et l'état final

- pas d'accès direct au plan (x,Q^2)
- interactions multicouleurs compliquées
 - quid des possibles effets des interactions multi-partoniques (MPI)? importantes lorsque:
 - ullet les observables sont plus différentielles en p_T
 - les distributions de parton augmentent (la probabilité d'interactions multiples augmente)
 - contributions du CGC très complexes (deux champs forts simultanés ⇒ pas de factorisation simple)
 - lien entre les approches MPI (factorisation colinéaire) et les approches CGC (factorisation haute énergie)
 - per se, hors formation du QGP
 - effet nucléaire froid
- indispensable de connaître les PDF nucléaires dans un grand domaine cinématique
- études spécifiques des effets sur l'état initial: processus Drell-Yan

Complémentarité ep/eA et pp, pA, AA

eA: structure multidimensionnelle des nucléons et noyaux

eA : l'état initial est par définition bien connu pas d'accès au diagramme des phases

- accès contrôlable à la saturation important pour décrire l'état initial (CGC) avant formation du QGP en AA (et pA, pp)
- diffraction: on augmente le nombre de variable cinématique ⇒ information multidimensionnelle
- ullet corrélations di-hadron, moins d'incertitudes par rapport à pA
- physique du spin: possibilité de polarisation des deux faisceaux

Collision d'ions lourds

Introduction

interaction forte et gravitation

- approche multimessager: onde gravitationnnelle comme voie d'accès aux milieux denses en astrophysique: étoiles à neutron et équation de la matière à μ_B élevé
- test de la gravité modifiée: interaction gravitationnelle d'un objet massif
- holographie AdS/CFT appliquée aux systèmes à μ_B élevé