Cosmic Homogeneity with Multi-Tracers

Pierros Ntelis

Romanesco Broccoli, Italy since 16th c.

Cosmic Homogeneity with Multi-Tracers

Outline:

- Theoretical Framework
- Observations
- Instrumentation
- Methods
- Homogeneity Observables
- Conclusions and Outlook

Cosmic Homogeneity with Multi-Tracers

| Theoretical Framework

Standard Phenomenology:

Figure 2.2: Left: 2D representation of homogeneous (and isotropic) galaxy distribution Right: 2D representation of an isotropic (but not homogeneous) galaxy distribution [See text for explanation][Credit on [13]] M.Stolpovskiy

We cannot prove homogeneity but we can use observations to test it, Maartens arXiv:1104.1300

Cosmic Homogeneity with Multi-Tracers

| Theoretical Framework

Cosmic Homogeneity with Multi-Tracers

Inflation is needed for

- large scale isotropy
- flatness problem

comoving distance [Gly]
Conformal time, η as function of comoving distance resolving the horizon problem. [See [Image taken and remodified by Baumann [6]]

Cosmic Homogeneity with Multi-Tracers

$\begin{array}{ll}\dot{\dot{\delta}}+i k v=-3 \dot{\Phi} & \\ \dot{v}+\frac{\dot{a}}{a} v=-i k \mu \Psi & \\ \text { continuity eq. } \\ \text { velocity eq. }\end{array}$
$\dot{\delta}_{b}+i k v_{b}=-i k \mu \Psi$
$\dot{v}_{b}+\frac{\dot{a}}{a} v_{b}=-i k \mu \Psi+\frac{\dot{\tau}}{R}\left[v_{b}+3 i \Theta_{1}\right]$
$\dot{\Theta}+i k \mu \Theta=-\dot{\Phi}-i k \mu \Psi-\dot{\tau}\left[\Theta_{0}-\Theta+\mu v_{b}-\frac{1}{2} L_{2}(\mu) \Pi\right]$

$$
\Pi=\Theta_{2}+\Theta_{P 2}+\Theta_{P 0}
$$

$$
\dot{\Theta}_{P}+i k \mu \Theta_{P}=-\dot{\tau}\left[-\Theta_{P}+\frac{1}{2}\left(1-L_{2}(\mu)\right) \Pi\right]
$$

$$
\dot{\Theta}_{\nu}+i k \mu \Theta_{\nu}=-\dot{\Phi}-i k \mu \Psi \quad \text { trivial neutrini extension }
$$

Ma \& Bertschinger arxiv:9506072 citations(1161), Dodelson 2003

Cosmic Homogeneity with Multi-Tracers

Cosmic Homogeneity with Multi-Tracers

Content of
the Universe:
total energy density ratio
$\boldsymbol{\Omega}_{\text {tot }}(=1 ?)$
matter density ratio
$\boldsymbol{\Omega}_{\mathrm{m}}(=0.32 ?)$
baryon density ratio
$\boldsymbol{\Omega}_{\mathrm{b}}(=0.004 ?)$
neutrini density ratio
$\boldsymbol{\Omega}_{\mathrm{v}}=0 ?$
neutrini species
$\mathbf{N}_{\mathrm{v}}(=3.046 ?)$
Dark Energy eq ${ }^{\mathrm{n}}$ of state
$\mathbf{w}_{\mathrm{o}}(=-1 ?)$
$\mathbf{w}_{\mathrm{a}}(=0 ?)$

Fluctuations
after inflation
scalar spectral index

$$
\mathrm{n}_{\mathrm{s}}(=0.96 ?)
$$

running spectral index
$\mathrm{dn}_{\mathrm{s}} / \mathrm{dk}$ (=0?)
tensor spectral index

$$
n_{t}(=0 ?)
$$

tensor-scalar ratio
r (=0?)
normalisation

$$
\sigma_{8}(=0.8 ?)
$$

non gaussianity
$f_{\text {NL }}(=0$?)

\[

\] N.

Outline:

- Theoretical Framework
- Observations
- Instrumentation
- Methods
- Homogeneity Observables
- Conclusions and Outlook

Cosmic Homogeneity with Multi-Tracers

Telescopes	Theories	Observables	Instrumentation
SDSS (2000)	Homogeneity	Density Fluctuations	Angular Positions
	Dark Energy	N-Point	
DESI (2019)	Dark Matter	Correlation Function	Redshift
LSST (2020)	Modifications of Gravity	1D Power Spectrum	Photometry
Euclid (2023)	Inflation	Weak Lensing	Spectroscopy
		Fractality	Slitless
MSE (2023)	Neutrino Hierarchy	Primordial non-Guassianity	Spectroscopy
LIGO (2015)			Imaging
	Bounce	Tracers: Galaxies types, Voids, C.W., GW, ...	

Cosmic Homogeneity with Multi-Tracers

Outline:

- Theoretical Framework
- Observations
- Instrumentation
- Methods
- Homogeneity Observables
- Conclusions and Outlook

Sloan Digital Sky Survey (SDSS) | Instrumentation

- Main project:
- Telescope (New Mexico, USA)
- 2.5 m diameter
- Photometry (ugriz) (SDSS-II)
- Spectroscopic Survey:
- $360 \mathrm{~nm}<\lambda<1040 \mathrm{~nm}$
- $\Delta \lambda / \lambda \sim[1560,2270] \mid[1850,2650]$
- Asurv: 10400 deg2:
- 106 LUMINOUS RED GALAXIES @ z~0.5
- 10^{5} QUASARS, Lyman-a Forests @ z~2.0
- Objectives:
- Large Scale Structure Science
- Constrain Cosmology

extended Baryon Oscillation Spectroscopy Survey (eBOSS)

| Instrumentation

SPECTROSCOPY

FLRW-RECONSTRUCTION

Dark Energy Spectroscopy Instrument (DESI)

- Main project:
- Telescope (Kitt Peak, Arizona, USA)
- 4 m diameter
- Photometry (griz) (DECALS,BASS,MzLS,DES)
- Oll Target Line
- Spectroscopic Survey:
- $\lambda / n m \sim[360,555]|[555,656]|[656,980]$
- $\Delta \lambda / \lambda \sim[2000,3200]|[3200,4100]|[4100,5000]$
- Asurv: 14000 deg² 2 :
- 10x107 Emission Line Galaxies @ z < 1.7
- 10^{5} Lyman-a Forests
@ $z<3.5$
- Objectives:
- Large Scale Structure Science
- Constrain Cosmology (GC, WL)

$$
\text { DESI }
$$

Dark Energy Spectroscopy Instrument (DESI)

Target selection, Multiband Photometry

FLRW-RECONSTRUCTION

Large Synoptic Survey Telescope (LSST)

- Main project:
- Cerro Pachón (Vicuan, Chile)
- Paul-Baker type with 3 mirrors telescope
- large field telescope (3.5 deg^{2})
- 3.5G pixel camera
- equipped with 6x80 cm diameter Filters
- rotate infront of the focal plane

- Photometry (ugrizy):
- $\Delta \lambda / \lambda=? ? ?$
- $380<\lambda / \mathrm{nm}<1080$
- 20×10^{9}
@ $z<4$
- Asurv: 18000 deg 2
- Objectives:
- Supernovae Science
- Large Scale Structure Science
- Constrain Cosmology (GC, WL)

Large Synoptic Survey Telescope (LSST)

Renoir Responsibilities:

- Supernovae Hubble Diagram
- LSST automated filter exchanger of the focal plane
- Machine Learning Technics for precise z-estimates
- Calibration of Photometry of LSST with GAIA
- ...
gaia
Position of Stars in Milky Way
cnes

- Main project:
- Sun-Earth L2 point for 6 years
- 1.2 SiC mirror telescope
- Imaging VIS
- $550<\lambda / n m<900$
- Photometry NISP (Y,J,H)
- $900<\lambda / n m<2000$
- Slitless Spectroscopy NISP :
- $920<\lambda / n m<1850$
- $\Delta \lambda / \lambda=380$
- Ha Target Line
- Asurv: 15000 deg 2
- 5×10^{7} Emission $^{\text {Line }}$ Galaxies @ $z<2.3$
- Objectives:
- Nature of Dark Matter (WL)
- Dark Energy (GC)
- Large Scale Structure Science

Euclid | | P.N.G./Inflation | | |
| :--- | :--- | :--- | :--- |
| 2023 | m_{v} | M.G. | 2029 |

Briefly Strategy

-External Data from Ground based Telescopes
-Imaging with VIS and Ground Based Telescopes
-Slitless Spectrometry and Photometry with NISP in
-Wide Field (15000 deg2)
-Deep Field (20 deg2) x2

Euclid Mission

NISP instrument

Near Infrared Spectrometer and Photometer

Taken from https://www.lam.fr/projets-plateformes/projets-sol-et-spatiaux/article/euclid-nisp?lang=fr
c
Cixisu CPPM

NISP instrument

Near Infrared Spectrometer and Photometer

- Focal Plane: $4 \times 42040 \times 204018$ micron pixel Teledyne TIS detectors ($0.53 \mathrm{deg}^{2}$)
- 3 Broad-Band Filters (YJH)
- λ / nm ~ [900-1192], [1192-1544], [1544-2000]

Euclid Star Prize Team 2019 given to CPPM Euclid Team
Characterization of the 20 IR detectors taken over a year with 85\% efficiency, leading to 400 TB of data
-> pixel map products and models for the Science Ground Segment (SGS)
Laurence Caillat, Romain Legras, Jean-Claude Clemens, Aurélia Secroun, William Gillard and Jérôme Royon

Maunakea Spectroscopic Explorer (MSE)

Figure 98: Recent galaxy redshift surveys as a function of their area and redshift range, compared with the proposed MSE survey. The thickness of each bar is proportional to the total number of galaxies. Notice the transition from logarithmic to linear scale on x-axis at $5000 \mathrm{deg}^{2}$.

Taken from arXiv:1904.04907

Renoir Responsibilities:

- Minor contributions jointly with other French labs
cnes ches CPM

Laser Interferometer Gravitational-wave Observatory (LIGO)

Luisiana

RenoirResponsibility:

- Minor Preparations

Left: Gravitational Wave (GW) Signal as a function of time Right: Physical interpretation of the GW signal, which correspond to a coalescence of two Black Holes

-> 11 Sources detected with low z,RA,DEC resolution

Cosmic Homogeneity with Multi-Tracers

Outline:

- Theoretical Framework
- Observations
- Instrumentation
- Methods
- Homogeneity Observables
- Conclusions and Outlook
cnes Centie

Cosmic Homogeneity with Multi-Tracers | Homogeneity Observables

How do you study Homogeneity?

with fractals

Romanesco Broccoli, Italy since 16th c.

1 pt Stat: Overdensity

$$
\delta(t ; r)=\frac{n(t ; r)-\bar{n}(t)}{\bar{n}(t)}
$$

2pt Stat: 2pt Correlation Function

$$
<\xi\left(t ; r_{1}, r_{2}\right)>=<\delta\left(t ; r_{1}\right) \delta^{\star}\left(t ; r_{1}, r_{2}\right)>=<\xi(t ; r)>
$$

2pt Stat: Power Spectrum
Fourier Transform

$$
\xi(r)=\int \frac{d^{3} k}{(2 \pi)^{3}} P(k) e^{-i k r}
$$

Fractal Dimension

$$
\mathcal{D}_{2}(r)=3+\frac{d \ln }{d \ln r}\left[1+\frac{3}{r^{3}} \int_{0}^{r} d s \xi(s) s^{2}\right]
$$

Cosmic Homogeneity with Multi-Tracers

| Methods

Counts-in-Spheres: $\quad N(<r)=\int_{0}^{r} d d(s) d s \propto r^{D_{2}}$
Fractal Dimension: $\quad D_{2}(r)=\frac{d \ln N(<r)}{d \ln r}$

Homogeneous @ large scales

$$
D_{2}(r)=3
$$

Inhomogeneous
@ small scales (clustering)

$$
D_{2}(r)<3
$$

Transition to Homogeneity at:

$$
D_{2}\left(R_{H}\right)=3 @ 1 \%
$$

(Arbitrary Choice; Independent of survey)

What we actually measure? |Methods

Gallaxies are biased tracers of matter | Methods

$$
\begin{array}{ll}
\delta_{\text {tracer }}=\mathbf{b} & \delta_{\text {matter }} \\
\xi_{\text {tracer }}=\mathbf{b}^{2} & \xi_{\text {matter }}
\end{array}
$$

REDSHIFT SPACE DISTORTIONS
 | Methods

Kaiser effect

power is enhanced on large scales

Finger of God

Actual configuration

Apparent configuration (view from below)

Outline:

- Theoretical Framework
- Observations
- Instrumentation
- Methods
- Homogeneity Observables
- Conclusions and Outlook
- SDSS/eBOSS galaxy sample
- Small Scale:
- clustering
- fractality
- Large scales:
- asymptotic
smoothness
- Confirmation of
- \wedge CDM model
- Cosmological Principle
- Exclusion of fractal models @ LSS

$$
\mathcal{D}_{2}(r)=3+\frac{d \ln }{d \ln r}\left[1+\frac{3}{r^{3}} \int_{0}^{r} d s \xi(s) s^{2}\right]
$$

-> Normalised Homogeneity scale increases with times as the matter (galaxy/tracers) grow with time
cnes cenve sixim Meply

Cosmic Homogeneity with Multi-Tracers
| Homogeneity Observables

Extract Cosmology

$$
\begin{aligned}
\chi^{2}\left(b_{0}, \Omega \mid \Omega_{F}\right) & =\sum_{z \in \Delta z}\left[\frac{O\left(z ; \Omega_{F}\right)-M\left(z ; b_{0}, \Omega\right)}{\sigma_{O}(z)}\right]^{2} \\
O\left(z ; \Omega_{F}\right) & =\frac{\mathcal{R}_{H}^{G a l}\left(z ; \Omega_{F}\right)}{d_{V}\left(z ; \Omega_{F}\right)} \\
M\left(z ; b_{0}, \Omega\right) & =\frac{\mathcal{R}_{H}^{G a l, T h}\left(z ; b_{0}, \Omega\right)}{d_{V}(z ; \Omega)}
\end{aligned}
$$

Observable

Theoretical Model

TEST

$$
\begin{array}{rcc}
b(z)=b_{0} \sqrt{1+z} & \text { for all z } & \text { Linear } \\
b_{2, \mathcal{R}_{H}}\left(z ; b_{0}, z_{\star}\right)=b_{0}\left\{\begin{array}{ll}
\text { bias } \\
{\left[\frac{1}{4} \frac{1}{4\left(1+z_{\star}\right)^{3 / 2}}(1+z)^{2}+\frac{3}{4} \sqrt{1+z_{\star}}\right],} & \text { for } z<z_{\star}
\end{array}\right\} & \text { model }
\end{array}
$$

Cosmic Homogeneity with Multi-Tracers

Extract Cosmology

- \mathcal{R}_{H} / d_{V}
- CMB + Lensing
- $\mathcal{R}_{H} / d_{V}+\mathrm{CMB}+$ Lensing

$\Omega_{m}=0.363 \pm 0.025$ 31\%
$\Omega_{\Lambda}=0.649 \pm 0.021 \mathbf{2 8 \%}$

cnes …zem

Cosmic Homogeneity with Multi-Tracers

Alternatives

- Cosmic Homogeneity with Cosmic Voids
- Cosmic Homogeneity with GW sources

Alternatives - Cosmic Homogeneity with Cosmic Voids

Empirical modelling of $\quad \boldsymbol{\xi}_{\mathbf{V g}}(\mathbf{r}) \sim \xi_{V V}(r) \simeq \delta_{g}\left(r ; \delta_{c}, r_{s}, r_{V}, \alpha, \beta\right)=\delta_{c} \frac{1-\left(r / r_{s}\right)^{\alpha}}{1+\left(r / r_{V}\right)^{\beta}}$
\quad Void-Void 2PCF

PN, AJHawken, A.Pisani, S.Escoffier et Al. in preparation

Alternatives - Cosmic Homogeneity with GW sources

Oth-Simulation:

- Let each SDSS-CMASS galaxy host 1 GW source
- Resample each (z, RA, DEC)-GW drawn from
- a gaussian with
- μ : SDSS-CMASS positions
- σ : given by GW resolution (LIGO)

Scenarios $\quad \sigma_{-} \quad z, \quad$ RA, DEC)-GW

- Pessimistic : 0.01 , sqrt(20), sqrt(20)
- Optimistic : 0.004, sqrt(16), sqrt(16) (Best LIGO data)
- Optimistic best : $\quad 0.001$, sqrt(1), sqrt(1)
- Subsample scenarios at 80%

PN, et Al. in preparation

Alternatives - Cosmic Homogeneity with GW sources

Oth-Simulation: Results:

PN, et in preparation

Alternatives - Cosmic Homogeneity with GW sources

Oth-Simulation: Conclusion:

To get a clustering signal comparable to Galaxy tracers (~ CMASS NGC)

Need about
Number GW sources. : 500000
Volume (According to FID cosmo): 3.4 (Gpc/h) ${ }^{3}$
Resolution
: $\Delta z, \Delta R A, \Delta D E C=0.001,1,1$

Timescale
: 1-3 decades

PN, et in preparation

Outline:

- Theoretical Framework
- Observations
- Instrumentation
- Methods
- Homogeneity Observables
- Conclusions and Outlook

Conclusions

- $\mathrm{R}_{\mathrm{H}} / \mathrm{dV}$, new cosmological probe
- $\mathrm{R}_{\mathrm{H}} / \mathrm{dV}$, improves the precision on $\left(\Omega_{\mathrm{m}}, \Omega_{\Lambda}\right)>\mathbf{2 8 \%}$
- Other tracers (VOIDS, GW) behave complementary to galaxy Tracers
- Fractality validates
- ^CDM phenomenology in ~\% CL
- Cosmological Principle

Outlook

- More rigorous analysis from
- Gravitational Waves
- Voids
- $\mathrm{R}_{\mathrm{H}} / \mathrm{dV}$, application on Modifications of Gravity
- Other tracers (Sheets, Filaments)
- Code publicly available
- A lot more to explore on this observable

Thank you for your attention!
Aknowledgements:
Renoir Team,
A. Hawken
A. Tilquin
S. Escoffier
J. Zoubien
M.C. Cousinou
P.Barratta
M. Aubert

References:
P.L et al. arXiv:1602.09010
P.N et al. arXiv:1702.02159
P.N et al. arXiv:1810.09362
P.N et al. arXiv:1904.06135
J.C. Clemens
C.Tao
F.Feinstein
D.Fouchez
cnes Getriek eitin CPPM

