

Implementation and validation of an SiPM model in GATE

BRAHIM MEHADJI, MATHIEU DUPONT, CHRISTIAN MOREL

AIX MARSEILLE UNIV, CNRS/IN2P3, CPPM, MARSEILLE, FRANCE

What to be simulated ?

- \bullet One SiPM pixel = Geiger-mode avalanche photodiodes (µCell ~ 35µm), connected in parallel
- $\mbox{.} Response of one <math display="inline">\mu Cell:$

- · Signal shape: amplitude, rise time and fall time
- Noises:
 - Pulse generation:
 - Dark noise: rate
 - Crosstalks: probability multiplicity
 - Afterpulse: recovery time, decay time
 - Delayed-crosstalks: recovery time, decay time
 - Electronic Noise: sigma

Parameters Measurement (1/2)

Simply record SiPM response in dark condition

• Measure:

- SiPM : MPPC S1330-3050VE
- C12332-01 evaluation board (Gain = 21)
- Lecroy oscilloscope, 2.5 GHz
- Dark room
- Temp: 25°C

• Compute:

- White noise sigma
- Rise and fall time of the signal

→Make 2D histogram amplitude peaks vs elapsed time from primary pulse

Parameters Determination (2/2)

The GATE simulation


```
<?xml version="1.0" encoding="utf-8" ?>

<sipms>

 - <sipm name="hamamatsucross">
   - <propertiestable>
     - <!--
         <property name="tauRise" value="1" unit="nanosecond"/>
                          <property name="tauFall" value="100" unit="nanosecond"/>
      -->
       <property name="durationPulse" value="300" unit="nanosecond" />
       <property name="deadTime" value="0." unit="nanosecond" />
       <property name="tauRecovery" value="28.5" unit="nanosecond" />
       <property name="tauBuilk" value="11.26" unit="nanosecond" />
       <property name="Cap" value="0.07" />
       <property name="Cct" value="0.00779" />
       <property name="histRes" value="11." unit="nanosecond" />
       <property name="t0" value="0." unit="nanosecond" />
       <property name="a" value="-1." />
       <property name="b" value="-0.5" />
       <property name="signalDeconvolvedAmplitude" value="0.00048" unit="volt" />
       <property name="signalDeconvolvedAmplitudeSigma" value="0.0000025" unit="volt" />
       <property name="whiteNoiseSigma" value="3.77E-05" unit="volt" />
       <property name="darkNoise" value="496" unit="kilohertz" />
     - <propertyvector name="DIMENTIONS" unit="micrometer">
        <ve value="50." />
        <ve value="50." />
       </propertyvector>
     - <propertyvector name="CROSSTALK">
        <ve value="9.32349329e-01" />
        <ve value="6.16959618e-02" />
        <ve value="5.38537476e-03" />
        <ve value="5.13045742e-04" />
        <ve value="5.06332074e-05" />
        <ve value="5.09200439e-06" />
        <ve value="5.12085052e-07" />
        <ve value="5.14986007e-08" />
       </propertyvector>
     - <propertyvector name="CROSSTALK_DISPERTION">
        <ve value="9.32349329e-01" />
        <ve value="6.16959618e-02" />
        <ve value="5.38537476e-03" />
        <ve value="5.13045742e-04" />
        <ve value="5.06332074e-05" />
        <ve value="5.09200439e-06" />
        <ve value="5.12085052e-07" />
        <ve value="5.14986007e-08" />
       </propertyvector>
     - <propertyvector name="PULSE" unit="nanosecond">
        <ve time="0.0" value="0.011675983255021347" />
        <ve time="0.0500000066756627" value="0.014392492543427967" />
        <ve time="0.10000000133514675" value="0.01854140934527878" />
```

In the macro file:

/gate/digitizer/Singles/insert sipm /gate/digitizer/Singles/sipm/setVolume SiPM_macropixels /gate/digitizer/Singles/sipm/type hamamatsucross /gate/digitizer/Singles/sipm/setStartSignal 0 ns /gate/digitizer/Singles/sipm/setDurationSignal 0.01 s /gate/digitizer/Singles/sipm/setStepSignal .1 ns /gate/digitizer/Singles/sipm/surface YZ

Dark count amplitude:
$$DC(t) = A_{DC} \left[1 - \exp\left(-\frac{t}{\tau_{rise}}\right) \right] \exp\left(-\frac{t}{\tau_{fall}}\right)$$

Α

Afterpulse recovery:

$$(t) = A_{DC} \theta(t) \left[1 - \exp\left(-\frac{t}{\tau_{rec}}\right) \right]$$

Afterpulse distribution:

$$f_{AP}(t) = \frac{C_{AP}}{t} \exp\left(-\frac{t}{\tau_{bulk}}\right) \frac{A(t)}{A_{DC}}$$

Delayed-crosstalk distribution:

$$F_{\rm CT}(t) = \frac{C_{\rm CT}}{\sqrt{t}} \exp\left(-\frac{t}{\tau_{bulk}}\right)$$

J. Rosado and S. Hidalgo, 2015 JINST 10 P10031

Construction des histogrammes 2D

A case of study

3 × 3 mm² MPPC s13360-3050VE

 $3 \times 3 \times 5 \text{ mm}^3$ LYSO crystal

No wrapping

No amplifier

Measurements with a ²²Na and ²⁴¹Am source

-> crystal parameters determined by using the ET9125SWB photomultiplier and transposed to the SiPM simulation

Experimental

60 keV

20 % less photons per keV than at 511 and 1275 keV

Signals comparison

Signal shape of the photoelectric peaks while using an SiPM in experimental and simulation

Simulating without noises ...

	With noises		No afterpulsing		No Crosstalks		No darknoise		No noise	
	mean	FWHM	mean	FWHM	mean	FWHM	mean	FWHM	mean	FWHM
60 keV	0.11	(35.7 ± 0.6)	0.11	31.3 ± 1.3	0.11	31.6 ± 1.0	0.11	31.3 ± 1.3	0.11	(30.5 ± 1.3)
511 keV	1.00	11.0 ± 0.3	1.00	10.9 ± 0.6	1.00	10.2 ± 0.6	1.00	10.3 ± 0.6	1.00	10.3 ± 0.5
1275 keV	2.09	5.6 ± 0.1	2.10	5.3 ± 0.4	2.13	$5.3 {\pm} 0.3$	2.09	5.5 ± 0.3 (2.14	5.2 ± 0.6

Photo-peaks mean and FWHM while simulating the SiPM by removing some sources of noise

- The SiPM behaviour is well enough reproduced into GATE so has to get realistic results
- Adding noises makes simulation closer to experimental

Simulating and summing pulses is sufficient

Detected phot (time)	ons	Poten (tial pulses time)		Generation pulses due to noise and the amplitudes b taking account the recovery t	of the eir oy t for ime	Generating and summing the signal for each pulse
	Energy	SiPM sir	SiPM simulation		SiPM simulation summing pulses		
	(keV)	Mean	FWHM (%)	mean	FWHM(%)		Summing pulses
	60	0.11	35.7	0.11	35.7		amplitude
	511	1	11.0	1	11.0		
	1275	2.09	5.6	2.09	5.6		

Prospective

To validate GATE for simulating timing performances

S. Gundacker et al., "High-frequency SiPM readout advances measured coincidence time resolution limits in TOF-PET", Phys. Med. Biol. 64 (2019) 055012.

Thank you for you attention

B. Mehadji, M. Dupont, C. Morel

mehadji@cppm.in2p3.fr

Centre de Physique des Particules de Marseille (CPPM)

Aix-Marseille Univ' and CNRS/IN2P3

1/22/20