

Experimental and Theoretical Validation of Nuclear Data and Models using different Monte Carlo Codes

<u>Umer H. Mover</u>, Rahim Nabbi a. Karl Ziemons in collaboration with Institute of Nuclear Engineering and Technology Transfer

> OpenGate Meeting @ Wuppertal 22. Jan. 2020

Content:

1. Assigned Task

- FLUKA simulations
- Comparison between MC Codes
- Benchmarking FLUKA-GEANT4

2. Experimental Validations: Experiment-to-code

- Mid/High Energy Application 62 MeV
- Low Energy Application 11 & 12 MeV

3. Conclusion

AACHEN IIVERSITY OF APPLIED SCIENCES

Assigned Task

SIMULATION SETUP AND GEOMETRY

- Proton beam of 1mm dia, (90, 160, 210 MeV)
- Beam directed onto a cylindrical phantom having an elemental composition (C₅H₈O₂) and density 1.19 gm/cm³
- Phantom diameter: 30cm, Height: 20cm
- Detector ring Inner dia: 54.11 cm, Height: 20cm
- Detector material: Plastic scintillator
- Beam entrance opening ratio: 5/85 of ring circumference
- Remaining ring divided into 10 segments to study angular distribution

Simulation Setup

OF APPLIED SCIENCES

AACHEN IVERSITY

PROBLEM

Variation in the production yield of secondary particles (neutrons and gammas) in the simulation of a proton beam with two different simulation codes (Geant4 and MCNP6).

TASK APPROACH

In order to find which simulation results are more closer to reality, same simulation setup was rebuilt on another simulation tool *FLUKA*, to have a better comparison and reasoning for the observed differences.

- FLUKA is a fully integrated particle physics Monte Carlo simulation package
- Applications: high energy physics, shielding, cosmic ray studies, radiobiology, etc.

FLUKA PHYSICAL MODELS AND DATA LIBRARIES

FLUKA Simulations

ANALYSIS OF INTERACTION DENSITY

(Spatial Distribution of Particles produced per Proton)

Comparison between MC Codes

ANGULAR DISTRIBUTIONS – GAMMAS YIELD

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

MCNP6

Experiment-to-Code Validation

COMPREHENSIVE EXPERIMENTAL BENCHMARKING

For Medium energy applications

62 MeV - at LNS, INFN Laboratory, Catania, Italy

For Low energy applications

12 MeV - at TIARA facility of Japan Atomic Energy Agency 11 MeV - at CYRIC facility, Tohoku University, Japan

Benchmark Experiment: M. Osipenko, M. Ripani, R. Alba, et.al. "Comprehensive measurement of neutron yield produced by 62 MeV protons on Beryllium target", 3rd Intl. Conf, on ANIMMA, 2013

EXPERIMENT-TO-FLUKA

ANALYSIS:

- FLUKA shows a good agreement with experiment.
- It gives more precise estimation for E>20MeV
- Slight overestimation of low energy neutrons in experiment:

-Neutron Production in air (secondary proton induced neutrons)

 Underestimation of 5-20MeV neutrons in experiment: -Neutron Absorption in air (high absorption cross section)

NEUTRON PRODUCTION IN AIR AND VACUUM:

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

COMPARISON WITH OTHER MODELS

FLUKA PEANUT is precise model for hadron-nucleus reactions within intermediate energies (E>20MeV)

SCIENCES

OF APPLIED

FH AACHEN UNIVERSITY (

Benchmark Experiment:

Hagiwara M, et al. "Measurement of neutron and gamma-ray yields on thick targets bombarded with 12 MeV protons". Proc. of the 2011 Symp. on Nuclear Data: JAEA-Conf 2012-001; 2011 Nov 16–17; Tokai, Japan: JAEA; 2012. p. 111-116.

EXPERIMENT-TO-FLUKA

ANALYSIS:

- FLUKA shows acceptable agreement at lower angles.
- Fits precisely well at 60°
- Slight deviation at lower angles:
 - Effect of air
 - Difference in Data library
- Deviations at higher angles: geometrical effect of target
 - In simulation : 2mm x 4mm x 4mm -
 - In experiment: 2mm x ? x

Proton induced cross section

Proton elastic cross section

- High elastic cross section in low energy region results in high yield of low energy neutrons.
- Neutrons are produced through different reaction channels; also from recoiled protons, and (n,2n) channel

SCIENCES

DIFFERENCE IN DATA LIBRARY:

n-induced cross section

Rise in (n,2n) cross section above 2.5 MeV; (n,2n) > (p,n) cross section

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

DIFFERENCE IN DATA LIBRARY:

- For n-incuded reactions with ⁹Be FLUKA uses ENDF/B– VII.0 for n < 20MeV
- Difference in neutron capture cross-section could also be a possible reason for slightly low neutron yield with FLUKA.
- FLUKA B-VII.0: High neutron capture cross-section, low neutron yield

EXPERIMENTAL COMPARISON WITH FLUKA, RANS FUNCTION AND DATA LIBRARIES

Function was developed at RANS, RIKEN

Analysis:

- RANS (RIKEN) function fits well with slight overestimation of 14%.
- ENDF and JENDL underestimated up to 35%.
- Similarly, FLUKA also underestimates within same deviation range at lower angles
- FLUKA gives more deviations at higher angles.

Angular measurements: 0° , 15° , 30° , 45° , 60° , 90° and 110°

<10% Statistical Uncertainties <13% Systematic Uncertainties SCINFUL-R MC code for Detector η

<u>Benchmark Experiment:</u> So Kamada, et. al.; "Measurement of Energy-angular Neutron Distribution for 7Li, 9Be(p,xn) Reaction at EP = 70 MeV and 11 MeV", Journal of the Korean Physical Society, 2011.

© FH AACHEN UNIVERSITY OF APPLIED SCIENCES

FH AACHEN JNIVERSITY OF APPLIED SCIENCES

CYRIC FACILITY, TOHOKU UNIVERSITY, JAPAN

10¹³ 10 $0 \deg. \times 10^3$ $\times 10^3$ Neutron Flux [n·MeV⁻¹·μC⁻¹·Sr⁻¹] 15 deg.×10² 10 30 deg.×10 $\times 10$ 10¹⁰ 45 deg. 60 deg. × 10⁻¹ $\times 10$ 10 90 deg.×10⁻² 10⁸ 110 deg.×10 $\times 10$ 10 10⁶ $\times 10$ 10⁵ **10**⁴ $\times 10$ 10³ 8 9 10 0 7 Neutron Energy [MeV]

EXPERIMENT-TO-FLUKA

ANALYSIS:

- FLUKA shows a good agreement.
- Deviations observed in high energy due to experimental uncertainties (as FLUKA had good agreement in 12MeV BM)
- Slight deviation in yield: -Effect of air
 -Data library

CYRIC FACILITY, TOHOKU UNIVERSITY, JAPAN

EXPERIMENTAL COMPARISON WITH FLUKA AND MCNPX

Analysis:

- FLUKA is closer to experiment than MCNP at lower angles.
- Deviations at higher angles could be a combined effect of:
 - high statistical errors (simul.)
 - secondary proton interaction with air

Conclusion

- 1. Discrepancies were found in:
 - <u>Physical Models</u> and
 - <u>Data Libraries</u> when employed in different simulation codes
- Experimental benchmarking determined the accuracies of the numerical methods and suggested:
 - the appropriate choice of MC code and
 - the appropritate selection of the Data library and physical models

Conclusion

- in <u>62 MeV experiment</u>:
 - GEANT4 models had high deviations
 - MCNP was close to experiment (Data libraries)
 - FLUKA was the most accurate (PEANUT model fits precisely well for n > 20MeV)
- in <u>11/12 MeV experiments</u>:
 - MCNP and PHITS produce close results with experiments.
 - FLUKA also agrees with experiments within the same deviation range.
 - RANS function produces closest results to experiment.