Synthèse de la réunion BooST du 16-17 January 2020

Présents: Francesco, Giampi, Jérôme, Julien, Karim Excusés: Aoife, Damir, Régis, Sébastien, Stéphane

Thursday PM: Discussion on project objectives

Main objectives

- 1. Coherent measurements of the b-hadron decay modes involving $b \rightarrow s\tau\tau$ or $b \rightarrow s\tau e/\mu$ transitions, taking full advantage of LHCb and Belle II complementarity:
 - $B^+ \rightarrow K^+ \tau \tau/e/\mu$: Belle II + LHCb (μ only)
 - $\quad B^0 \rightarrow K_s \tau \tau / e/\mu : Belle II$
 - $\quad B^0 \rightarrow \ K^{*0} \ \tau \ \tau/e/\mu \ : \ LHCb$
 - $B_{(s)} \rightarrow \tau \tau/e/\mu$: LHCb (+ Belle II ?)
 - $B_s \rightarrow \Phi \tau \tau/e/\mu$: LHCb
 - $\quad \Lambda_b \ \rightarrow \ \Lambda \ \tau \ \tau / e / \mu \ : \ LHCb$

These studies, performed in the context of the BooST project, will enforce the collaboration between theorists and Belle II or LHCb experimentalists, allowing to:

- a. Develop new reconstruction techniques
- decay chain and B mass (Th LHCb)
- c-tag (Th Belle and possibly FCC-ee)
- discriminating isolation variable (Th LHCb & Belle)
- b. Optimise analyses and measurements for different NP scenarios (Th Belle & LHCb)
- consider benchmark NP scenarios and study the impact on the decay phase-space
- study the sensitivity of the experimental measurements to phase-space in light on the differences observed for the different NP scenario. If useful, take this dependence into account early enough in the analysis.
- propose and publish a method to present measurements coherently and easily interpretable by theorists.
- can be quoted to support this idea: $M(X\mu)^2$ dependence (which mode ? Karim ?), difference between $X \mu^+ \tau^-$ and $X \mu^- \tau^+$, $K\tau\mu$ from Belle and LHCb.
- c. Measure the $\tau \rightarrow 3\pi(\pi^0)$ differential decay rate with Belle data, implementation of the model in an MC generator for LHCb measurements.
- 2. Interpretation of results using EFT in relation with 1.b above (Th)
- 3. Preparation for next generation of experiments (FCC-ee)
 - a. development of new observables (Th)
 - b. prospective studies for FCC-ee for modes under considerations with inputs from Belle & LHCb analysis tools and techniques (Belle & LHCb)

Friday AM: Discussion on tasks organisation

Tasks:

- A. $\tau \rightarrow 3\pi(\pi^0)\nu$ differential BF with Belle data
- B. Study of decay phase space for different NP benchmark scenarios

- a. Identify the relevant NP scenarios and compute matrix element of decay with tau leptons
- b. Investigate the implication of these scenarios in the analyses (impact on efficiency, signal/background ratio)
- c. Coherent presentation of LHCb and Belle result and their combination to ease theoretical interpretation (in the different NP scenarios)
- C. Analysis techniques
 - a. c-tag for Belle + FCC-ee
 - b. preparation for run 3 LHCb (trigger and discriminating variables (isolation))
 - c. analysis tools for LHCb and FCC-ee (tau lepton identification, background characterisation & rejection with MVA, neutrino reconstruction and B mass estimation)
- D. Measurements
 - a. LHCb (+ prospects for FCC-ee)
 - b. Belle II (+ prospects for FCC-ee)
- E. Theoretical Interpretation
- F. New observables (for future experiments)

Requested manpower: 1 3-years post-doc, 4 2-years post-doc, 1 3-years PhD

- 1. <u>1 Post-doc 3 years</u>, experimentalist on Belle
 - a. c-tag (C.a)
 - b. τ -> 3π (A)
- 2. <u>1 Post-doc 2 years</u>, theorist (somehow experienced)
 - a. NP benchmark scenarios (B.a)
 - b. New observables (F)
- 3. <u>1 Post-doc 2 years</u>, theorist
 - a. Coherence and combination of LHCb & Belle measurements (B.c)
 - b. Interpretation of results (E)
- 4. & 5. <u>2 Post-docs 2 years</u> + 6. <u>1 PhD 3 years</u>, experimentalists on LHCb
 - a. preparation for LHCb run3 (C.b)
 - b. analysis tools for LHCb and FCC-ee (C.c)
 - c. BF measurements (D.a)

Schematic view

				2021				2022				2023				2024			
			1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	
1	Belle	IJC-Lab	A								C.a								
2	Th	CPT or IJC-Lab	B.a			F													
3	Th	CPT or IJC-Lab								B.c				E					
4	LHCb	CPPM or	C.b		B.b														
5	LHCb	LPC or								C.c				D.a					
6	LHCb	LPNHE				C.b			C.c				D.a						