A molecular dynamics code on CPU, GPU and FPGA

Matthieu Haefele, CNRS/UPPA

Pau, Novembre 2019

Outline

 Introduction

« Porting on GPUs

e Comparison CPU vs GPU in time and energy
e Current effort on FPGA porting

2.1

Supercapacitors simulation

Carbon electrodes (Blue), lonic liquid (red/green)

Study of the liquid/electrode interface

Molecular dynamics with accurate electrostatic

Constant potential electrodes

Code Metalwalls, maintained by M. Salanne (Sorbonne University)

Q =f(t) ?

2.2

EXA2PRO H2020 FET-HPC project

) Configuration options [}{}
C;'C++_-'F0l_'tran Skeletons & Components ~
application with CPUIGPUIDFE .
implementations Scheduling

criteria

Fault tolerance
technigues

y Components L eme
medatada CPU toolchain 1t ®
GPU toolchain {0t

Design phase

phase

Dﬁ Plug-ins [> DFE toolchain 5%

Al
£
o
E
>

o
=1
@

o

Technical Debt
management

Scheduling and RT management \

5 5 Performance
monitoring modeling
| .‘x < il i e @
2
J

Execution

Performance improvement on CPU

n 1 Y e

e e . -, = e R

s

‘5.
fi*!
,,5 %

Initially F20, pure MPI code (20K Imes)

x15 in performance

28 MCPUh allocated last four years => 60 MCPUh saved
Enables science that could not be reached

Hybrid MPI+OpenMP and MPI+OpenACC now available
« Single maintainable code base

r;:|-'1-n
Lp-Eor
Yife

is-l-m

.1._* ‘:*!'_1

#ﬁa##

vk i
3

lm‘ £

2.4

GPU porting with OpenAcc

e Simple data structures in Metalwalls => ok for GPU

e First 1Sacc kernels done alone thanks to OpenAcc tutorials

o GPU hackathon @IDRIS solved the last two key issues

e 3-4 months of work in total

« Porting of /K lines of intensive computations with ~800 directives
« Working Multi-GPU implementation on OpenPower (ouessant)

3.1

Step 1: getting the correct answer

« Kernel by kernel porting

« Unified memory takes care of data transfer

» Avoid computations on the CPU to avoid CPU/GPU data transfer
« Objective: to have a full time step running on the GPU

o

Step 2: getting performance

e Running the NVidia profiler

« Replacing acc kernels with acc parallel loop

« Adding loop gang and loop vector => two levels of parallelism
e Adding collapse => larger amount of work to distribute

« Switching off the unified memory with explicit data transfers

3.3

Architecture comparison

)
£
)
=
-
g
)
~
=
)
)
=
=]
=
k7
2]
B
v
)
=
31
=
N
S
o
b
)
=7

Higher is better

Lower is better

Energy [kJ]

Architecture comparison

)
=
=
=
=]
=
L
~
=
@
S
i
=]
=
@
2]
=
@
O
=
3}
=
N
©
L]
N
3
=¥

I I
Ideal scalability

code scalability
|

machine energy scalability

2N resources => 2P Watts
T/2 s execution time
E kJ energy requirement

T s execution time

¢
® N resources => P Watts
. E kJ energy requirement

200
Energy [kJ]

Computing systems used

« PRACE PCP system KNL @ CINES
» |ntel Xeon Phi, Knights Landing 7250@1.40GHz
= 17 MPI ranks / node, 8 threads / rank (SMT2)

o GENCI system Broadwell @ CINES
= |ntel Xeon Broadwell (E5-2690 V4@2.6GH?7)
» 4 MPI ranks / node, 14 threads / rank (SMT2)

o GENCI system OpenPower @ IDRIS
= Minsky S822LC (Power8+, GPU Pascal, NVLink)
= 4 MPI| ranks / node, 1 GPU per rank

4.3

mailto:7250@1.40GHz
mailto:V4@2.6GHz

Results intra-node

OIpenPI)wer I@ IDII?IS —In—
KNL @ CINES —<«— -
Broadwell @ CINES —«—

1 GPU

17 MPI ranks
4 MPI ranks

T
£
)
c
>
| -
o,
S~~~
=
(O]
G
I
>
£
7p]
7p]
2
(0]
(&)
C
©
=
-
(@]
T
(D)
o

2 MPI ranks 1 MPI rank

I I I I I I I I I =

20 40 60 80 100 120 140 160 180 200 220
Energy [kJ]

Results intra-node

« Outstanding super linear energy scalability !
« Wrong: very poor energy baseline

Dark silicon by just letting resources idle within a node is not an option

4.5

Results inter-node

[[
OpenPower @ IDRIS —+—
KNL @ CINES —<«— |
Broadwell @ CINES —x«—

11 nodes

5 nodes

[
E
)
=
>
S
L,
~
k=3
Q
+—
o
>
£
n
n
£
()
(&)
=
@©
=
S
(@)
Y
S
[}
ol

2 nodes

1 node

200
Energy [kJ]

Results inter-node

From performance point of view at scalability limit

« BDW is 1, KNL 62%, GPU 84%

From energy point of view at scalability limit

« GPUis 1, KNL 2.5

Comment: energy measurement issues on BDW, unfortunately

4.7

You said FPGA ?

Some acronyms

o FPGA: Field Programmable Gate Array

LUT: Look Up Table (boolean logic function)

FF: Flip-Flop (circuit to store one bit of information)
BRAM: 4KB blocks of RAM

DSP: Digital Signal Processing (versatile arithmetic unit)

But whatisit?

« Reconfigurable logic
o Algorithm "hard wired" in the silicon
« Computations offloaded as for a GPU accelerator

5.1

An FPGA is NOT a processor

Processor

Core

Data movement triggered Data movement programmed
by instructions

5.2

Data Flow Engine

Data Flow Engine

FPGA —-<=> DRAM

5.3

Maxeler accelerator node

Maxeler accelerator node

Optical ring bus

5.4

Computing system

Dual socket AMD EPYC

Dual socket AMD EPYC

Dual socket AMD EPYC

Maxeler accelerator node

Maxeler accelerator node

Maxeler accelerator node

5.5

Architecture comparison

Chip 2x Intel SkyLake Intel KNL NVidiaPascal Xilinx XCVU9P
Techno. 14nm 14nm l6nm l6nm
Power 410W 215W 300W < 50W
Freg. 2./GHz 1.4GHz 1.5GHz 0.1-0.5GHz
cache 2x57MiB 34 MiB 18 MiB 62 MiB
HBM / MCDRAM 0 16GB 16GB 0
DRAM 128-768 GB 384 GB 0 48GB
Peak perf. (DB) 4 TF/s 3 TF/s 5.3TF/s 0.5 TF/s

5.6

How to design a circuit for FPGA ?

Available languages

« VHDL, the standard: very low level for electronic people
e XilinX HLS: Pragmas for C

o SycL or Intel OneAPI (C++ framework)

« Maxeler MaxJ: Domain Specific Language based on Java

Challenges

« Algorithm reformulation for a streaming implementation
e Reductions are your enemies
« Significant space on silicon can be saved with smaller precision arithmetic

5.7

Development workflow

 State of the chip known at each clock tick
« Spreadsheet based performance model reliable (5-10%)
« Design choices performed playing around with LibreOffice

5.8

Development workflow

« Kernels written in MaxJ language: embedded DSL based on java
» Eclipse IDE speeds up development and unit tests execution

« Kernels called from F?0 or C/C++ with offload mechanism

o 24-48 hours needed for kernels compilation !!

« Algorithm correctness performed in simulator / emulator

5.9

Example: computing a distance

d(P1, P2)

Example: computing a distance

d(P1, P2)

Example: computing a distance

d(P1, P2)

Example: computing a distance

d(P1, P2)

Example: computing a distance

d(P1, P2)

Example: computing a distance

d(P1, P2)

Example: computing a distance

d(P1, P2)
— -

Example: computing a distance

d(P1, P2)
— -

Example: computing a distance

d(P1, P2)
— -

Example: computing a distance

e That was computing in time: building a pipeline
« Now computing in space: replicating this pipeline

5.19

Example: computing a distance

5.20

Mixed precision implementations

On CPU/GPU

« Double, single and half (only GPU) precision floating point representation
o Factor 2x (resp. 4x) in performance expected when using single (resp. half) instead of
double

On FPGA

« Any floating point representation available, even fixed point
 Similar performance but requires less resources (2x - 6x between SP and DP)

How could we reduce the accuracy of number representation without damaging the result ?

6.1

Numerical accuracy analysis

—— double @ Accuracy double
—— single @ Accuracy model
© Accuracy float

0
=
2
°
-
=
IS
o
e
c
2
[}
H*

0 25 50 75 100 125 150 1078 1077 1076 1073
CG iteration Order of magnitude

Quantifying the accuracy of the results with QP, DP & SP

Quantifying the accuracy of the model

Gap between the two: opportunity for DFE performance

Current status: first kernels running in simulator, first examples run in HW

6.2

Conclusion & perspectives

CPU & GPU

e Xx15 in performance on CPU

e Code ported on GPU with OpenAcc

« Single maintainable code base

« 4 GPUs 3x more efficient in energy and 25% faster than 5 KNL nodes

FPGA

« Accuracy study done
o FPGA implementation started

Beyond FPGA, the DFE programming model focuses the developer on data movement which
is also relevant on CPU & GPU

7.1

Acknowledgement

Abel Marin-Lafleche

Vineet Soni

Charles Prouveur

7.2

