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Outline

 Introduction

« Porting on GPUs

e Comparison CPU vs GPU in time and energy
e Current effort on FPGA porting
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Supercapacitors simulation

Carbon electrodes (Blue), lonic liquid (red/green)

Study of the liquid/electrode interface

Molecular dynamics with accurate electrostatic

Constant potential electrodes

Code Metalwalls, maintained by M. Salanne (Sorbonne University)

Q =f(t) ?
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Performance improvement on CPU
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Initially F20, pure MPI code (20K Imes)

x15 in performance

28 MCPUh allocated last four years => 60 MCPUh saved
Enables science that could not be reached

Hybrid MPI+OpenMP and MPI+OpenACC now available
« Single maintainable code base
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GPU porting with OpenAcc

e Simple data structures in Metalwalls => ok for GPU

e First 1Sacc kernels done alone thanks to OpenAcc tutorials

o GPU hackathon @IDRIS solved the last two key issues

e 3-4 months of work in total

« Porting of /K lines of intensive computations with ~800 directives
« Working Multi-GPU implementation on OpenPower (ouessant)
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Step 1: getting the correct answer

« Kernel by kernel porting

« Unified memory takes care of data transfer

» Avoid computations on the CPU to avoid CPU/GPU data transfer
« Objective: to have a full time step running on the GPU

o




Step 2: getting performance

e Running the NVidia profiler

« Replacing acc kernels with acc parallel loop

« Adding loop gang and loop vector => two levels of parallelism
e Adding collapse => larger amount of work to distribute

« Switching off the unified memory with explicit data transfers
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Architecture comparison
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Architecture comparison
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Computing systems used

« PRACE PCP system KNL @ CINES
» |ntel Xeon Phi, Knights Landing 7250@1.40GHz
= 17 MPI ranks / node, 8 threads / rank (SMT2)

o GENCI system Broadwell @ CINES
= |ntel Xeon Broadwell (E5-2690 V4@2.6GH?7)
» 4 MPI ranks / node, 14 threads / rank (SMT2)

o GENCI system OpenPower @ IDRIS
= Minsky S822LC (Power8+, GPU Pascal, NVLink)
= 4 MPI| ranks / node, 1 GPU per rank
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Results intra-node
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Results intra-node

« Outstanding super linear energy scalability !
« Wrong: very poor energy baseline

Dark silicon by just letting resources idle within a node is not an option
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Results inter-node
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Results inter-node

From performance point of view at scalability limit

« BDW is 1, KNL 62%, GPU 84%

From energy point of view at scalability limit

« GPUis 1, KNL 2.5

Comment: energy measurement issues on BDW, unfortunately
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You said FPGA ?

Some acronyms

o FPGA: Field Programmable Gate Array

LUT: Look Up Table (boolean logic function)

FF: Flip-Flop (circuit to store one bit of information)
BRAM: 4KB blocks of RAM

DSP: Digital Signal Processing (versatile arithmetic unit)

But whatisit?

« Reconfigurable logic
o Algorithm "hard wired" in the silicon
« Computations offloaded as for a GPU accelerator
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An FPGA is NOT a processor

Processor

Core

Data movement triggered Data movement programmed
by instructions
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Data Flow Engine

Data Flow Engine

FPGA —-<=> DRAM
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Maxeler accelerator node

Maxeler accelerator node

Optical ring bus
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Computing system

Dual socket AMD EPYC

Dual socket AMD EPYC

Dual socket AMD EPYC

Maxeler accelerator node

Maxeler accelerator node

Maxeler accelerator node
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Architecture comparison

Chip 2x Intel SkyLake Intel KNL NVidiaPascal Xilinx XCVU9P
Techno. 14nm 14nm l6nm l6nm
Power 410W 215W 300W < 50W
Freg. 2./GHz 1.4GHz 1.5GHz 0.1-0.5GHz
cache 2x57MiB 34 MiB 18 MiB 62 MiB
HBM / MCDRAM 0 16GB 16GB 0
DRAM 128-768 GB 384 GB 0 48GB
Peak perf. (DB) 4 TF/s 3 TF/s 5.3TF/s 0.5 TF/s
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How to design a circuit for FPGA ?

Available languages

« VHDL, the standard: very low level for electronic people
e XilinX HLS: Pragmas for C

o SycL or Intel OneAPI (C++ framework)

« Maxeler MaxJ: Domain Specific Language based on Java

Challenges

« Algorithm reformulation for a streaming implementation
e Reductions are your enemies
« Significant space on silicon can be saved with smaller precision arithmetic
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Development workflow

 State of the chip known at each clock tick
« Spreadsheet based performance model reliable (5-10%)
« Design choices performed playing around with LibreOffice

5.8




Development workflow

« Kernels written in MaxJ language: embedded DSL based on java
» Eclipse IDE speeds up development and unit tests execution

« Kernels called from F?0 or C/C++ with offload mechanism

o 24-48 hours needed for kernels compilation !!

« Algorithm correctness performed in simulator / emulator
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Example: computing a distance

d(P1, P2)
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Example: computing a distance
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Example: computing a distance

e That was computing in time: building a pipeline
« Now computing in space: replicating this pipeline
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Example: computing a distance
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Mixed precision implementations

On CPU/GPU

« Double, single and half (only GPU) precision floating point representation
o Factor 2x (resp. 4x) in performance expected when using single (resp. half) instead of
double

On FPGA

« Any floating point representation available, even fixed point
 Similar performance but requires less resources (2x - 6x between SP and DP)

How could we reduce the accuracy of number representation without damaging the result ?
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Numerical accuracy analysis

—— double @ Accuracy double
—— single @ Accuracy model
© Accuracy float
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Quantifying the accuracy of the results with QP, DP & SP

Quantifying the accuracy of the model

Gap between the two: opportunity for DFE performance

Current status: first kernels running in simulator, first examples run in HW

6.2




Conclusion & perspectives

CPU & GPU

e Xx15 in performance on CPU

e Code ported on GPU with OpenAcc

« Single maintainable code base

« 4 GPUs 3x more efficient in energy and 25% faster than 5 KNL nodes

FPGA

« Accuracy study done
o FPGA implementation started

Beyond FPGA, the DFE programming model focuses the developer on data movement which
is also relevant on CPU & GPU
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