

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype

Tao CHANG

¹DEN-Service d'Etudes des Réacteurs et de Mathématiques Appliquées (SERMA)

November 27, 2019

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 1/35

Introduction

- Monte Carlo Neutron Transport
- PATMOS
- Objective

2 Implementations

4 Conclusions

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 2/35

ヘロト ヘヨト ヘヨト ヘヨト

- In the nuclear field, Monte Carlo (MC) simulation is widely used to compute physical quantities such as:
 - density of particles
 - reaction rates
 - fission power
 - ...

List of MC codes:

- TRIPOLI-4[®] (CEA, France)
- MCNP-5 (LANL, USA)
- OpenMC (MIT, USA)
- SERPENT (VTT, Finland)
- RMC (Tsinghua, China)

Ο.

Credit: ANS Nuclear Cafe

2

ヘロン 人間 とくほ とくほ とう

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 3/35

• The Monte Carlo transport codes simulate the life of a particle from birth to death

A succession of transports and collisions

- Advantages:
 - * precision, few approximations

ヘロト ヘヨト ヘヨト ヘヨト

complex geometries

Drawbacks:

high computational cost

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 5/35

ヘロン 人間 とくほ とくほ とう

ъ

Cross section

• Address the interaction probability of the particle with the different nuclides composing the material

- Pre-tabulated method (load precalculated total cross sections at (E, T))
- On-the-fly Doppler Broadening method (calculate cross sections at **(E, T)** before each random flight)

3

Run time percentage

• Total macroscopic cross section is the most consuming part

Processing Step	Run Time Percentage (%)
Total Cross Section	95.4
exp	17.6
erfc	49.4
binary_search	2.4
compute_integral	79.2
Partial Cross Section	1.7
exp	0.2
erfc	0.6
binary_search	0.1
compute_integral	1.4
Initialization	1.8
buildMedium	1.5
Others	1.1

イロト イポト イヨト イヨト

Introduction

- Monte Carlo Neutron Transport
- PATMOS
- Objective

2 Implementations

3 Tests

4 Conclusions

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 8/35

ヘロト ヘヨト ヘヨト ヘヨト

Þ

∃ 990

ヘロン 人間 とくほ とくほ とう

- A prototype dedicated to the testing of algorithms for high performance computations on modern architectures
- Prepare next generation of TRIPOLI
- Written in C++
- A subset of neutron physics is implemented but representative for performance analysis

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

- A prototype dedicated to the testing of algorithms for high performance computations on modern architectures
- Prepare next generation of TRIPOLI
- Written in C++
- A subset of neutron physics is implemented but representative for performance analysis
- Hybrid parallelism: MPI + OpenMP + GPU offload
- GPU version written in CUDA
- Only the microscopic cross section calculation is offloaded

Introduction

- Monte Carlo Neutron Transport
- PATMOS
- Objective

2 Implementations

3 Tests

4 Conclusions

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 10/35

ヘロト ヘヨト ヘヨト ヘヨト

3

Objective

- The implemented CUDA version in PATMOS is not "portable" as it is only for Nvidia GPU
- A variety of architectures to address:
 - Many-core:
 - Intel Xeon Phi
 - Arm
 - Heterogeneous architecture
 - Intel + Nvidia GPU
 - OpenPower + Nvidia GPU
 - AMD + GPU
 - ...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

Objective

- The implemented CUDA version in PATMOS is not "portable" as it is only for Nvidia GPU
- A variety of architectures to address:
 - Many-core:
 - Intel Xeon Phi

Arm

- Heterogeneous architecture
 - Intel + Nvidia GPU
 - OpenPower + Nvidia GPU
 - AMD + GPU
- Develop portable codes on a large variety of architectures
 - Evaluate the different programming models in terms of performance of implemented benchmark

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● の Q @

★ E > ★ E >

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction

Implementations

- Programming Model
- Algorithms
- Benchmark

3 Tests

4 Conclusions

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 12/35

Programming Model

∃ 990

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- Only consider intra-node parallelism
- OpenMP thread + $\{X\}$
- {X} can be any languages or libraries which are capable of parallel programming on modern architectures, such as:
 - Low-level:
 - CUDA
 - High-level:
 - OpenACC
 - OpenMP
 - Kokkos
 - SYCL

(< ≥) < ≥)</p>

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction

Implementations

- Programming Model
- Algorithms
- Benchmark

3 Tests

4 Conclusions

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 14/35

イロト イポト イヨト イヨト

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Algorithm 2: Microscopic cross section lookup

```
Input: randomly sampled a group of N tuples of materials,
       energies and temperatures, \{(m_i, E_i, T_i)\}_{i \in N}
Result: caculated microscopic cross sections for N materials.
        \{\sigma_{ik}\}_{i\in N,k\in |m_i|}
CUDA Threadblock Level
#pragma acc parallel loop gang Of
#pragma omp target teams distribute
for (n_{ik}, E_i, T_i) where n_{ik} \in m_i do
   \sigma_{ik} = pre_calcul();
   CUDA Thread Level
   #pragma acc loop vector or
   #pragma omp parallel for
   foreach thread in warp do
       \sigma_{ik} += compute_integral();
   end
```

end

・ 同 ト ・ ヨ ト ・ ヨ ト

э

• History-based (HB) algorithm on GPU:

- Too many small data transfers
- Many memcpy calls
- Small kernel

• Tuning solutions:

- Reduce memcpy calls, enlarge kernel size
- A new method called **pseudo event-based (PEB)** algorithm

Algorithm 3: Pseudo event-based algorithm Each MPI Rank foreach batch or generation do initialize particle state from source; **OpenMP** Thread Level foreach bank of N particles in batch do while particles remain in bank do foreach remaining particle in bank do bank required data; end • do microscopic cross section lookups \Rightarrow offloaded; foreach remaining particle in bank do sum up total cross section; sample distance, move particle, do interaction; end end end end

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 18/35

э

Introduction

Implementations

- Programming Model
- Algorithms
- Benchmark

Conclusions

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 19/35

ヘロト ヘヨト ヘヨト ヘヨト

Benchmark

slabAllNulides

Image: A matrix

- Fixed source MC simulation
- Slab geometry
 - 10,000 volumes, 900K
 - each material \Rightarrow 355 nuclides
 - main components: H1 and U238
 - Pressurized Water Reactor (PWR) spectrum
- On-the-fly Doppler broadening method

Implementations

- Parameters
- Results
- CUDA Profiling

4) Conclusions

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 21/35

ヘロト ヘヨト ヘヨト ヘヨト

3

Parameters

Machine

Ouessant: 2× 10-core IBM Power8, SMT8

+ 4× Nvidia P100 (GENCI IDRIS)

Cobalt-hybrid: 2×14 -core Intel Xeon E5-2680 v4, HT2 + $2 \times$ Nvidia P100 (CEA-CCRT)

Cobalt-V100: 2 × 20-core Intel Skylake

+ 4× Nvidia V100 (CEA-CCRT)

slabAllNuclides

- Inputs: 20,000 particles, 10 cycles, 100 as bank size
- Outputs: particles/sec (higher is better)

Environment

	GCC	Intel Compiler	PGI	XLC	CUDA
Ouessant	7.3.0		18.10	16.1.0	9.2
Cobalt-hybrid	7.1.0	17.0.6	18.7		9.0
Cobalt-V100	7.1.0	17.0.6	18.7		9.2

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype Nove

November 27, 2019 22

ヘロン 人間 とくほ とくほ とう

∎ 22/35

Introduction

Implementations

- Parameters
- Results
- CUDA Profiling

4 Conclusions

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 23/35

ヘロト ヘヨト ヘヨト ヘヨト

э

Results OMPth + {X}

・ロン ・四 ・ ・ ヨン ・ ヨン ・

ъ

			slabAll	Nuclides
Machine		Programming Model	(×10 ² p	articles/s)
			HB	PEB
Ouessant	CPU (20 cores, SMT8)	OMPth	4.7	4.7
		OMPth+ACC	4.6	4.5
		OMPth+offload	3.7	3.7
	1P100	OMPth+CUDA	6.7	27.2
		OMPth+ACC	2.7	22.2
		OMPth+offload	2.5	3.6
	2P100	OMPth+CUDA	13.0	47.5
		OMPth+ACC	4.5	40.2
		OMPth+offload	4.3	6.7
	4P100	OMPth+CUDA	23.7	65.8
		OMPth+ACC	9.4	52.4
		OMPth+offload	5.0	12.2
Cobalt-hybrid	CPU (28 cores, HT2)	OMPth	10.1	8.7
		OMPth+ACC	5.6	5.0
	1P100	OMPth+CUDA	6.8	25.4
		OMPth+ACC	2.7	18.5
	2P100	OMPth+CUDA	16.4	48.5
		OMPth+ACC	5.6	34.5

Table: Particle traking rate via different programming models on Ouessant and Cobalt-hybrid

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 24/35

Results OMPth + {X}

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

э

Figure: Comparision of performance speedup for slabAllNuclides on Ouessant and Cobalt-hybrid

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 25/35

Results

OMPth + $\{X\}$

æ

			slabAlli	Nuclides
Machine		Programming Model	(×10 ² p	articles/s)
			HB	PEB
Ouessant	CPU (20 cores, SMT8)	OMPth	4.7	4.7
		OMPth+ACC	4.6	4.5
		OMPth+offload	3.7	3.7
	1P100	OMPth+CUDA	6.7	27.2
		OMPth+ACC	2.7	22.2
		OMPth+offload	2.5	3.6
	2P100	OMPth+CUDA	13.0	47.5
		OMPth+ACC	4.5	40.2
		OMPth+offload	4.3	6.7
	4P100	OMPth+CUDA	23.7	65.8
		OMPth+ACC	9.4	52.4
		OMPth+offload	5.0	12.2
Cobalt-V100	CPU (40 cores)	OMPth	14.7	13.3
		OMPth+ACC	6.9	6.1
	1V100	OMPth+CUDA	7.8	56.0
		OMPth+ACC	3.1	27.7
	2V100	OMPth+CUDA	16.8	89.7
		OMPth+ACC	6.7	42.5
	4V100	OMPth+CUDA	32.5	134.2
		OMPth+ACC	11.8	54.8

Table: Particle traking rate via different programming models on Ouessant and Cobalt-V100

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 26/35

Results OMPth + {X}

ヘロン 人間 とくほ とくほ とう

ъ

Figure: Comparision of performance speedup for slabAllNuclides on Ouessant and Cobalt-V100

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 27/35

Results OMPth + {X}

ヘロン 人間 とくほ とくほ とう

2

Sum-up

• PEB is more suitable than HB, for PEB:

- The CUDA version can reach up to 28.5x.
- The OpenACC version can attain a factor of **11.6x**, there is no large difference between performances on Ouessant and Cobalt-V100.
- The OpenMP offload version is limited to **2.5x** performance speedup due to the underdeveloped implementation of OpenMP offload functionalities of XLC 16.1.

Implementations

- Deremo
- Parameters
- Results
- CUDA Profiling

Conclusions

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 29/35

ヘロト ヘヨト ヘヨト ヘヨト

CUDA Profiling

History-based Method		
Block size	(32, 2, 1)	
Registers/Thread	68	
Theoretical Warps/SM	28	
Occupancy	8.8%	
FLOP Efficiency	4.4%	

Pseudo event-based Method		
Block size	(32, 2, 1)	
Registers/Thread	68	
Theoretical Warps/SM	28	
Occupancy	31.6%	
FLOP Efficiency	21.9%	

<ロ> (四) (四) (日) (日) (日)

2

Introduction

2) Implementations

3 Tests

・ロト ・ 同ト ・ ヨト ・ ヨト

Conclusions

ъ

- The GPU performance via PEB surpasses significantly HB
- The OpenACC version can be competitive to the CUDA version with PEB
- The performance of OpenMP offload version is limited due to the underdeveloped support of CUDA asynchronous streams

Conclusions

∃ 990

ヘロン 人間 とくほ とくほ とう

Future work

- Implement other high-level programming languages such as SYCL
- Perform more tests to cover a wider range of architectures
- Adopt several metrics for the evaluation of portability and performance portability

ヘロン 人間 とくほ とくほ とう

ъ

Thank you

Portable Monte Carlo Transport Performance Evaluation in the PATMOS Prototype November 27, 2019 34/35