BSM physics at future ete colliders

The 2024 European Edition of the International Workshop on the Circular **Electron-Positron** Collider CEPC

April 10th 2024, Marseille, France

Juraj Klarić

Paul Cézanne, Le Golfe de Marseille vu de L'Estaque, Musée d'Orsay

Many open questions

- What is the nature of dark matter?
- Origin of the Baryon asymmetry of the Universe?
- Why is the Higgs so light?
- What is the thermal history of the Universe?
- Why are there multiple generations of fermions?
- What is the solution to the strong CP problem?
- Stability of the EW vacuum?
 - ... and many many more....
- But each question has multiple proposed solutions!

Higgs physics

- New physics directly coupled to the Higgs
- New physics affecting the Higgs potential

EW and Flavor

- Per-mil accuracy on EW parameters
- B-physics
- τ-physics

Light new physics

Higgs physics

- New physics directly coupled to the Higgs
- New physics affecting the Higgs potential

EW and Flavor

- Per-mil accuracy on EW parameters
- B-physics
- τ-physics

Light new physics

The SM Effective Field Theory Interpretation

- For high enough BSM scale, new particles are not directly observable
- Instead, we can write down all possible operators built from the SM fields

$$\mathscr{L}_{\text{SMEFT}} = \frac{1}{\Lambda^2} \sum_{i} C_i O_i + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

New physics effects – appear in the Wilson coefficients

Probing BSM physics in global fits

Figure from 2205.0855

Combined CEPC runs can probe physics up to the 10 TeV scale!

See the talk of Z. Liang

Higgs physics

- New physics directly coupled to the Higgs
- New physics affecting the Higgs potential

EW and Flavor

- Per-mil accuracy on EW parameters
- B-physics
- τ-physics

Light new physics

Higgs physics

- New physics directly coupled to the Higgs
- New physics affecting the Higgs potential

EW and Flavor

- Per-mil accuracy on EW parameters
- B-physics
- τ-physics

Light new physics

Higgs and the thermal history of the Universe

- In the SM, there are no firstorder phase transitions (FOPT)
- Modifications of the Higgs potential could lead to a FOPT
- Large deviation from equilibrium can lead to baryogenesis
- Colliding bubbles of true vacuum – Gravitational Waves?
- Potential complementarity between GW observatories (LISA) and future colliders?

BAU

See talk by M.J. Ramsey - Musolf

Higgs and the thermal history of the Universe

- In the SM, there are no firstorder phase transitions (FOPT)
- Modifications of the Higgs potential could lead to a FOPT
- Large deviation from equilibrium can lead to baryogenesis
- Colliding bubbles of true vacuum – Gravitational Waves?
- Potential complementarity between GW observatories (LISA) and future colliders?

BAU

D. Weir 1705.01783

See talk by M.J. Ramsey - Musolf

Higgs portal to hidden sectors

Search for Higgs decays to hadrons + missing energy

Z. Liu, L.-T. Wang, H. Zhang arXiv:1612.09284

Dark Matte

Future colliders can severely constrain exotic H decays!

Higgs portal to hidden sectors

Dark Matt

Future colliders can severely constrain exotic H decays!

Higgs physics

- New physics directly coupled to the Higgs
- New physics affecting the Higgs potential

EW and Flavor

- Per-mil accuracy on EW parameters
- B-physics
- τ-physics

Light new physics

Higgs physics

- New physics directly coupled to the Higgs
- New physics affecting the Higgs potential

EW and Flavor

- Per-mil accuracy on EW parameters
- B-physics
- τ-physics

Light new physics

Higgs physics

- New physics directly coupled to the Higgs
- New physics affecting the Higgs potential

See the talk by T. Robens

EW and Flavor

- Per-mil accuracy on EW parameters
- B-physics
- τ-physics

Light new physics

Higgs physics

- New physics directly coupled to the Higgs
- New physics affecting the Higgs potential

See the talk by T. Robens

EW and Flavor

- Per-mil accuracy on EW parameters
- B-physics
- τ-physics

Light new physics

• Feebly coupled states that avoid usual searches

Many more BSM scenarios covered in the talk by Xuai Zhuang

Light new physics

Renormalizable portals

- Scalars
- Vectors
- Fermions

Non-renormalizable portal

• Pseudo-scalars: Axions and axion-like particles

See the talks by Wang, Giappichini, Chen

Image credit: Heather Russel

Axions and ALPs

- Pseudoscalar pseudo-Nambu-Goldstone bosons arising from approximate BSM symmetries broken at some scale f_a >> v
- Light ALPs are excellent DM candidates through misalignment/decays of topological defects
- Coupling to the SM through the effective Lagrangian:

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^2}{2} a^2 + \frac{\partial^{\mu} a}{f_a} \sum_F \bar{\psi}_F \gamma_{\mu} C_F \psi_F$$
$$- C_{aGG} \frac{\alpha_s}{8\pi} \frac{a}{f_a} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} - C_{aWW} \frac{\alpha_2}{8\pi} \frac{a}{f_a} W^A_{\mu\nu} \tilde{W}^{\mu\nu,A}$$
$$- C_{aBB} \frac{\alpha_1}{8\pi} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu}.$$

Dark Matter

Figure from O'Hare et. al. 2112.05117

Heavy ALPs at future colliders

- Heavy ALPs can mediators between the SM and DM
 - Can easily reproduce the observed DM abundance
- Highly testable at Z factories
- May explain the muon g-2 discrepancy [Liu et. al. 2210.09335]

Fig. From [Liu et. al. 2210.09335]

See the talk by S. Giappichini

• Adding three singlet fermions can simultaneously solve several puzzles of particle physics

- The only renormalizable coupling is to the Higgs and leptons:
 - Heavy Neutral Leptons (HNLs)
- Non-renormalizable couplings in principle also possible

• Adding three singlet fermions can simultaneously solve several puzzles of particle physics

- The only renormalizable coupling is to the Higgs and leptons:
 - Heavy Neutral Leptons (HNLs)
- Non-renormalizable couplings in principle also possible

• Adding three singlet fermions can simultaneously solve several puzzles of particle physics

- The only renormalizable coupling is to the Higgs and leptons:
 - Heavy Neutral Leptons (HNLs)
- Non-renormalizable couplings in principle also possible

• Adding three singlet fermions can simultaneously solve several puzzles of particle physics

The only renormalizable coupling is to the Higgs and leptons:

- Heavy Neutral Leptons (HNLs)
- Non-renormalizable couplings in principle also possible

HNLs and v-masses

The light neutrino masses

$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

[Minkowski '77 Gell-Mann/Ramond/Slansky '79 Mohapatra/Senjanović '80 Yanagida '79 Schechter/Valle '80]

Canonical type-I seesaw

HNLs and v-masses

The see-saw Lagrangian $\mathcal{L} \supset \frac{1}{2} \begin{pmatrix} \overline{\nu_L} & \overline{\nu_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & M_M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$

Mohapatra '93 Mohapatra/Valle '86 Bernabeu/Santamaria/Vidal/Mendez/Valle '86 Gavela/Hambye/Hernandez/Hernandez '09 Branco/Grimus/Lavoura '89 Malinsky/Romao/Lavoura '89

Low-scale linear and inverse seesaws

The light neutrino masses $m_{\nu} = -m_D M_M^{-1} m_D^T$

[Minkowski '77 Gell-Mann/Ramond/Slansky '79 Mohapatra/Senjanović '80 Yanagida '79 Schechter/Valle '80]

Canonical type-I seesaw

HNLs and the BAU

Ideal candidate to explain the BAU through leptogenesis. They easily satisfy the three Sakharov conditions:

- 1) Baryon number violation
 - sphaleron processes
- 2) C and CP violation
 - HNL decays and oscillations
- 3) Deviation from equilibrium
 - freeze-in and freeze-out of HNLs

Fukugita/Yanagida '86, Liu/Segre '93, Pilaftsis '97, Pilaftsis/Underwood '04;'05, , Akhmedov/Rubakov/Smirnov '98, Asaka/Shaposhnikov '05

HNLs at future e⁺e⁻ colliders

- With 2 HNLs leptogenesis is possible for all masses above 100 MeV
- Leptogenesis is possible in the entire experimentally accessible parameter space for 3 HNLs
- Target seesaw region nearly within reach of future colliders!
- Dedicated LLP detectors could probe an even smaller HNL couplings and masses

HNLs at future e⁺e⁻ colliders

- With 2 HNLs leptogenesis is possible for *all masses above* 100 MeV
- Leptogenesis is possible in the entire experimentally accessible parameter space for 3 HNLs
- Target seesaw region nearly within reach of future colliders!
- Dedicated LLP detectors could probe an even smaller HNL couplings and masses

From the talk by S. Giappichini

HNL branching ratios

• HNL branching ratios are highly constrained by the measured parameters in the minimal model (2 HNLs)

[Snowmass white paper 2203.08039]

• Leptogenesis imposes further constraints on the branching ratios

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK 1710.03744]

• Branching ratios become even more predictive when combined with Flavor and CP symmetries

HNL branching ratios

• HNL branching ratios are highly constrained by the measured parameters in the minimal model (2 HNLs)

[Snowmass white paper 2203.08039]

• Leptogenesis imposes further constraints on the branching ratios

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK 1710.03744]

• Branching ratios become even more predictive when combined with Flavor and CP symmetries

HNL branching ratios

• HNL branching ratios are highly constrained by the measured parameters in the minimal model (2 HNLs)

[Snowmass white paper 2203.08039]

• Leptogenesis imposes further constraints on the branching ratios

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK 1710.03744]

• Branching ratios become even more predictive when combined with Flavor and CP symmetries

Testing HNL properties at e⁺e⁻ colliders

- Large number of Z-bosons also lead to a substantial number of HNLs
- Sufficient event numbers to measure mixing to different flavors to a 0.5% accuracy!
- Very rich phenomenology: Lepton Number Violation, Lepton Flavor Violation, HNL oscillations in colliders etc...

Antusch et. al. 1710.03744

See the talk by B. M. S. Oliveira

Antusch et. al. 2308.07297

Testing HNL properties at e⁺e⁻ colliders

- Large number of Z-bosons also lead to a substantial number of HNLs
- Sufficient event numbers to measure mixing to different flavors to a 0.5% accuracy!
- Very rich phenomenology: Lepton Number Violation, Lepton Flavor Violation, HNL oscillations in colliders etc...

Antusch et. al. 1710.03744

Antusch et. al. 2308.07297

See the talk by B. M. S. Oliveira

Conclusions

- Exciting times ahead!
- Future colliders can probe BSM physics in both direct and indirect probes!
- Explanations to several puzzles of particle physics are within the reach of future colliders
- Future colliders can go beyond discovery and also do tests of certain BSM scenarios
 - Especially in the Z-pole run