Physics around the Z-pole at e+e- future colliders

Introduction

Impact of high precision observables

Physics Case for a Z-run with polarized beams

Conclusions

2024 EU Edition CEPC@Marseille, 10.4.2024

What is the current status?

- One Higgs particle discovery on 4.7.2012
 - strongly consistent with Standard Model (SM) predictions

- Few excesses around.....(e.g. a light scalar at about 95 GeV)
 - but not (yet) confirmed discoveries
- Still strong motivation for Beyond SM (BSM) physics
 - Dark Matter, Gravitational Waves, Baryon-Asymmetry, etc.
- However, scale of new physics window still unclear
 -the research field might be in great danger
 - ➡Therefore, high precision and/or high energy in specific areas needed and additional tools complementary to (HL)LHC analyses required to identify the promising windows
 LLParticles,2203.05502, Aiko, Endo, 2302.11377
 - ➡Z-pole running crucial as telescope to high AND lower energy scales!

⇒e+e- collider designs with sane beam polarization crucial!

Z-factory: high precision physics at the Z-pole

- Z-boson = carrier of the weak force
- Electroweak theory tested at quantum level via electroweak precision observables
- Clean environment enables also measurements of e.g. α_s
- High sensitivity to effects of new physics

Strong case for new programme of high precision measurements

- •Z-run at CEPC
- GigaZ option at the ILC
- dedicated Z-factory

Why a 'new' e+e- Z-factory?

Electroweak precision physics

- Sensitivity to quantum effects of new physics
 - All states contribute, including the ones that are too heavy to be produced directly
 - Probing the underlying physics and the properties of new particles

Electroweak precision observables

- EWPO: α , G_F, M_Z, M_W, Γ _I, sin² θ _{eff}, g_µ-2, ...
 - One example: precise measurement of

 $M_{W} = 80.377 \pm 0.012 \text{ GeV}$

- accuracy of 0.2 ‰
- leading to sensitivity to 1- and 2-loop quantum effects ...
- Previous experimental results at the Z-pole:
 - LEP: very precise measurement of M_Z, Γ_Z, A_{FB}(I), A_{FB}(b,c),...
 - SLD: A_{LR}(e), A_{LR}(μ), ...
- Of particular interest: $sin^2\theta_{eff} = 1 M_W^2/M_Z^2 + loop effects$
 - Determined from A_{FB}, A_{LR}
 - → High sensitivity to effects of new physics !

Remember the past: physics gain of polarized beams

- Past experience:
 - excellent e- polarization ~78% at SLC:
 - led to best single measurement of sin²θ=0.23098±0.00026 on basis of L~10³⁰ cm⁻²s⁻¹ (~600000 Z's)
- Compare with results from unpolarized beams at LEP:
 - sin²θ=0.23221±0.00029 but with L~2x10³¹cm⁻²s⁻¹ (~ 17 million Z's)

polarization can even compensate order of magnitude in luminosity for specific observables!

Experimental situation

Discrepancy between the most precise measurements Central value has large impact on physics predictions!

Where we need theory prediction:

1. Prediction of the measured quantity Example: $\Gamma(H \rightarrow b\overline{b})$

 \rightarrow at the same level or better as the experimental precision

- 2. Prediction of the measured process to extract the quantity Example: $e^+e^- \rightarrow ZH$
 - \rightarrow better than then ''pure'' experimental precision

Two types of theory uncertainties:

- 1. intrinsic: missing higher orders
- 2. parametric: uncertainty due to exp. uncertainty in SM input parameters Example: m_t , m_b , α_s , $\Delta \alpha_{had}$, ...

2024 EU Edition CEPC@Marseille, 10.4.2024

2. SM parameter determination

 \Rightarrow intrinsic uncertainties

 \Rightarrow more details in back-up

- 1. M_H : better than 20 MeV \Rightarrow negligible
- 2. M_Z : ~ 0.1 MeV with negligible theory uncertainties \Rightarrow negligible
- 3. $\alpha_s(M_Z)$: from (mainly) R_ℓ $\delta \alpha_s^{\text{exp}} \sim 10^{-4}$, $\delta \alpha_s^{\text{theo}} \sim 1.5 \times 10^{-4}$
- 4. m_t : from threshold scan $\delta m_t^{
 m exp/theo} \lesssim 50 ~
 m MeV$
- 5. m_b : from lattice calculations $\delta m_b \sim 10 \text{ MeV}$
- 6. $\Delta \alpha_{had}$: BES III and Belle II: $\delta(\Delta \alpha_{had}) \sim 5 \times 10^{-5}$ better from measurements "around the Z pole? $\sim 3 \times 10^{-5}$?

2. EWPOs in concrete BSM models

The by far best worked out model: SM

Intrinsic uncertainties:

Quantity	current experimental unc.	current intrinsic unc.		
$M_W \; [{ m MeV}]$	12	4	$(\alpha^3, \alpha^2 \alpha_s)$	
$\sin^2 \theta_{\rm eff}^{\ell}$ [10 ⁻⁵]	16	4.5	$(\alpha^3, \alpha^2 \alpha_s)$	
Γ_Z [MeV]	2.3	0.5	$(\alpha^3, \alpha^2 \alpha_s, \alpha \alpha_s^2)$	
R_b [10 ⁻⁵]	66	15	$(\alpha^3, \alpha^2 \alpha_s)$	
R_l [10 ⁻³]	25	5	$(\alpha^3, \alpha^2 \alpha_s)$	

Parametric uncertainties:

Quantity	$\delta m_t = 0.9 {\rm GeV}$	$\delta(\Delta \alpha_{had}) = 10^{-4}$	$\delta M_Z = 2.1 \; {\rm MeV}$		
$\delta M_W^{\sf para}$ [MeV]	5.5	2	2.5		
$\delta \sin^2 \theta_{\text{eff}}^{\ell,\text{para}}$ [10 ⁻⁵]	3.0	3.6	1.4		

⇒ Current intrinsic/parametric uncertainties are substantially smaller than current experimental uncertainties :-) in the SM!

Improvements with the ILC/FCC-ee/CEPC

Experimental errors of the precision observables:

	today	Tev./LHC	ILC/GigaZ	FCC-ee/TeraZ
$\delta \sin^2 \theta_{\rm eff}(\times 10^5)$	15	15	1.3	0.6
δM_W [MeV]	δM_W [MeV] 12 $\lesssim 12$		2-3	0.5
$\delta m_t \; [{ m GeV}]$	0.6	$\lesssim 0.5$	0.05	0.05

 M_W : from direct reconstruction and threshold scan (not taken into account here: M_W^{CDF})

 $\sin^2 \theta_{\text{eff}}$: 1/2 year TeraZ/GigaZ run (GigaZ: polarization important)

 α_s : Improvement from GigaZ/TeraZ run

 \Rightarrow no theory uncertainties included \Rightarrow visible effect for FCC-ee/TeraZ

2024 EU Edition CEPC@Marseille, 10.4.2024 Gudrid Moortgat-Pick

Polarization basics

- Longitudinal polarization: $\mathcal{P} = \frac{N_R N_L}{N_R + N_L}$
- Cross section:

$$\sigma(\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}) = \frac{1}{4} \{ (1 + \mathcal{P}_{e^{-}})(1 + \mathcal{P}_{e^{+}})\sigma_{\mathrm{RR}} + (1 - \mathcal{P}_{e^{-}})(1 - \mathcal{P}_{e^{+}})\sigma_{\mathrm{LL}} + (1 + \mathcal{P}_{e^{-}})(1 - \mathcal{P}_{e^{+}})\sigma_{\mathrm{RL}} + (1 - \mathcal{P}_{e^{-}})(1 + \mathcal{P}_{e^{+}})\sigma_{\mathrm{LR}} \}$$

• Unpolarized cross section:

$$\sigma_0 = \frac{1}{4} \{ \sigma_{\rm RR} + \sigma_{\rm LL} + \sigma_{\rm RL} + \sigma_{\rm LR} \}$$

- Left-right asymmetry: $A_{\text{LR}} = \frac{(\sigma_{\text{LR}} \sigma_{\text{RL}})}{(\sigma_{\text{LR}} + \sigma_{\text{RL}})}$
- Effective polarization and luminosity:

$$\mathcal{P}_{\text{eff}} = \frac{\mathcal{P}_{e^-} - \mathcal{P}_{e^+}}{1 - \mathcal{P}_{e^-} \mathcal{P}_{e^+}} \qquad \qquad \mathcal{L}_{\text{eff}} = \frac{1}{2} (1 - \mathcal{P}_{e^-} \mathcal{P}_{e^+}) \mathcal{L}$$

2024 EU Edition CEPC@Marseille, 10.4.2024

Why is helicity flipping required?Gain in effective lumi lost if no flipping available

e-trains
e-trains

$$\begin{pmatrix} -\\ +\\ +\end{pmatrix} + + + \begin{pmatrix} +\\ +\\ +\end{pmatrix} + + + \begin{pmatrix} -\\ +\\ +\end{pmatrix} + + + \begin{pmatrix} -\\ -\\ -\end{pmatrix} + - \begin{pmatrix} +\\ +\\ -\end{pmatrix} - + \begin{pmatrix} +\\ -\\ -\end{pmatrix} + - \begin{pmatrix} +\\ +\\ -\end{pmatrix} + - \begin{pmatrix} +\\ -\\ -\end{pmatrix} + - \begin{pmatrix} +\\ -\\$$

- 50% spent to 'inefficient' helicity pairing (most SM, BSM)
- Similar flip frequency for both beams ~ pulse-per-pulse
- Gain in △P_{eff} remains, but flipping required to understand:
 - Systematics and correlations P_e x P_e
- Spin rotators needed,.....well experienced at HERA, e.g....!

Why is helicity flipping required?

- With both beams polarized we gain in
 - Higher effective polarization (higher effect of polarization)

 $P_{eff}:=(P_{e_{-}}-P_{e_{+}})/(1-P_{e_{-}}P_{e_{+}})$

• Higher effective luminosity (higher fraction of collisions)

\sqrt{s}	$P(e^{-})$	$P(e^+)$	$P_{ m eff}$	$\mathcal{L}_{\mathrm{eff}}$	$\frac{1}{x}\Delta P_{\mathrm{eff}}/P_{\mathrm{eff}}$
total range	$\mp 80\%$	0%	$\pm 80\%$	1	1
250 GeV	$\mp 80\%$	$\pm 40\%$	$\mp 91\%$	1.3	0.43
$\geq 350~{\rm GeV}$	$\mp 80\%$	$\pm 55\%$	$\mp 94\%$	1.4	0.30
-	04	- 04	04		

Applicable for V,A processes, e.g. @Z=pole (most SM, some BSM)

$$\sigma$$
 (Pe-,Pe+)=(1-Pe- Pe+) σ_{unpol} [1-P_{eff} A_{LR}]

Impact of P(e+)

Statistics

And gain in precision

NO gain with only pol. e- (even if '100% ') !

Which precision do we need?

• Supersymmetry as a showcase:

2024 EU Edition CEPC@Marseille, 10.4.2024

Effective leptonic mixing angle

• Experimental uncertainty:

Today: LEP, SLD: $\sin^2 \theta_{eff}^{exp} = 0.23153 \pm 0.00016$

GigaZ/TeraZ: both beams polarized, Blondel scheme

 $\delta \sin^2 \theta_{\text{eff}}^{\text{exp,ILC(CEPC...)}} = 13(3) \times 10^{-6} \quad \Leftarrow \text{TU neglected}$

• Theoretical uncertainty [10-6]:

intrinsic today: $\delta \sin^2 \theta_{\text{eff}}^{\text{SM,theo}} = 47$ $\delta \sin^2 \theta_{\text{eff}}^{\text{MSSM,today}} = 50 - 70$ intrinsic future: $\delta \sin^2 \theta_{\text{eff}}^{\text{SM,theo,fut}} = 15$ $\delta \sin^2 \theta_{\text{eff}}^{\text{MSSM,fut}} = 25 - 35$

parametric today: $\delta m_t = 0.9 \text{ GeV}$, $\delta(\Delta \alpha_{had}) = 10^{-4}$, $\delta M_Z = 2.1 \text{ MeV}$ $\delta \sin^2 \theta_{eff}^{para,m_t} = 30$, $\delta \sin^2 \theta_{eff}^{para,\Delta\alpha_{had}} = 36$, $\delta \sin^2 \theta_{eff}^{para,M_Z} = 14$ parametric future: $\delta m_t^{fut} = 0.05 \text{ GeV}$, $\delta(\Delta \alpha_{had})^{fut} = 5 \times 10^{-5}$, $\delta M_Z^{ILC/CEPC} = 1/0.1 \text{ MeV}$

 $\Delta \sin^2 \theta_{\rm eff}^{\rm para,fut,m_t} = 2, \ \Delta \sin^2 \theta_{\rm eff}^{\rm para,fut,\Delta\alpha_{had}} = 18, \ \Delta \sin^2 \theta_{\rm eff}^{\rm para,fut,M_Z} = 6.5/0.7$

2024 EU Edition CEPC@Marseille, 10.4.2024 Gudrid Moortgat-Pick

Short reminder: why are polarized e[±] needed?

- Important issue: measuring amount of polarization
 - **limiting systematic** uncertainty for high statistics measurements
 - Compton polarimeters (up- /downstream): envisaged uncertainties of ΔP/P=0.25%
- Advantage of adding positron polarization:
 - Substantial enhancement of eff. luminosity and eff. polarization
 - new independent observables
 - handling of limiting systematics and access to in-situ measurements: ΔP/P=0.1% achievable!
 - Windows to new physics already at low energy!
- Physics impact: EWPO, Higgs-Physics, WW/Z/top-Physics, New Physics !

Literature: polarized e+e- beams at a LC (only a few examples)

- LCC-Physics Group: 'The role of positron polarization for the initial 250 GeV stage of ILC', arXiv: 1801.02840
- G. Moortgat-Pick et al. (~85 authors) : `Pol. positrons and electrons at the LC', Phys. Rept. 460 (2008), hep-ph/0507011
- G. Wilson: `Prec. Electroweak measurements at a Future e+e- LC', ICHEP2016, R. Karl, J. List, LCWS2016, 1703.00214
- many more (only few examples): 1206.6639, 1306.6352 (ILC TDR), 1504.01726, 1702.05377, 1908.11299,2001.03011, ...
- G. Moortgat-Pick, H. Steiner, `Physics opportunities with pol. e- and e+ beams at TESLA, Eur.Phys.J direct 3 (2001)
- T. Hirose, T. Omori, T. Okugi, J. Urakawa, Pol. e+ source for the LC, JLC, Nucl. Instr. Meth. A455 (2000) 15-24,....

2024 EU Edition CEPC@Marseille, 10.4.2024 Gudrid Moortgat-Pick

Polarized e^{\pm} for $sin^2\theta_{eff}$

• Precision depends crucially on polarization!

2024 EU Edition CEPC@Marseille, 10.4.2024

2024 EU Edition CEPC@Marseille, 10.4.2024

Help in challenging HL-LHC scenarios ?

- Assume only Higgs@LHC but no hints for SUSY:
 - Really SM?
 - Help from $sin^2\theta_{eff}$?
- If GigaZ precision:
 - i.e. Δm_{top} =0.1 GeV...
 - Deviations measurable
- sin²θ_{eff} can be the crucial quantity !
- ➡ telescope to NP!

$\sin^2 \theta_{eff}$ at the Z-factory

Measure both A_{FB} and A_{LR} in same experiment !

with improved precision w.r.t. LEP and SLC:

- ALR: large gain from polarization of both beams and higher luminosity
- AFB: gain from higher luminosity, better b-tagging, etc.

resolve unclear situation:

- New physics affecting AFB(b) and ALR(I) in different ways?
- Resolution of experimental discrepancy: reliable central value+ improved precision

---> large impact also on interpretation of LHC results ...

Which precision should one aim for?

- Theoretical uncertainties: Δsin2θ_{eff}^{ho}~5x10⁻⁵ (currently)
- Uncertainties from input parameters: Δm_Z, Δα_{had}, m_{top}
 - Δm_z=2.1 MeV:
 - $\Delta \alpha_{had}$ ~10 (5 future) x 10⁻⁵ :
 - Δm_{top} ~1 GeV (LHC):
 - Δm_{top} ~0.1 GeV (ILC):

$$\begin{split} &\Delta sin^2 \theta_{eff}{}^{para} \sim 1.4 \times 10^{-5} \\ &\Delta sin^2 \theta_{eff}{}^{para} \sim 3.6 \ (1.8 \ future \) \times 10^{-5} \\ &\Delta sin^2 \theta_{eff}{}^{para} \sim 3 \times 10^{-5} \\ &\Delta sin^2 \theta_{eff}{}^{para} \sim 0.3 \times 10^{-5} \end{split}$$

\rightarrow If $\Delta sin^2 \theta_{eff} \sim <3x10^{-5}$ achievable: big physics impact

What else at the Z-factory? $...\alpha_{s}, \Gamma_{l}, R_{b}$

α_s is a key parameter in QCD:

α_s = 0.1180(9) ± 0.0076 (Particle data 2022)

- Big progress via measuring event shapes variables as thrust
- Reduction of uncertainty via higher order calculations and hadronization corrections
- theoretical (SCET) models to reduce non-perturbative uncertainty promising to measure α_s if >10x lumi_{LEP} and better detectors
- Γ_1 : uncertainties in leptonic event selection mainly stat. limited
 - e.g. Moenig '01 – improvements from higher luminosity ≥10xlumi_{LEP} expected
- R_{b,c,e,µ,τ}, A_{b,c,e,µ,τ}: systematically limited
 - exploitation of beam polarization...

➡ Pol@CEP: see talk Zhe Duan

Further topics for a Z-factory

- Flavour physics at a Z-factory:
 - about 40% of Z-decays lead to B-hadrons
 - large boost allows good separation of the 2 B's in clean environment
 - large A_{FB} allows tagging of initial state flavour from event axis only
 - unique studies in B_s to check syst. in $|V_{cb}|$, $|V_{ub}|$
 - unique studies in weak decays in polarized beauty hadrons

• Rare Z decays

- study of lepton flavour violating decays with high luminosity

• Z' physics

- realized in many scenarios of new physics
- Sensitivity to mixing between Z and Z'

Irles et al., arXiv: 190500220

In many cases detailed studies are still ongoing for a Z-factory...

CEPC Operation Plan and Goals in TDR

Particle	E _{c.m.} (GeV)	Years	SR Power (MW)	Lumi. per IP (10 ³⁴ cm ⁻² s ⁻¹)	Integrated Lumi. per year (ab ⁻¹ , 2 IPs)	Total Integrated L (ab ⁻¹ , 2 IPs)	Total no. of events	
H*	240	10	50	8.3	2.2	21.6	4.3×10^{6}	
			30	5	1.3	13	$2.6 imes 10^6$	
Z	01	2	50	192**	50	100	$4.1 imes 10^{12}$	
	91	2	30	115**	30	60	$2.5 imes 10^{12}$	
W	160	1	50	26.7	6.9	6.9	$2.1\times {\bf 10^8}$	
	100	1	30	16	4.2	4.2	$1.3 imes 10^8$	
tī	360	5	50	0.8	0.2	1.0	$0.6\times {\bf 10^6}$	
			30	0.5	0.13	0.65	$0.4 imes 10^6$	

* Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs.

** Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies.

*** Calculated using 3,600 hours per year for data collection.

CEPC-SppC Proposals-J. Gao

ICFA Seminar 2023, Nov. 30, 2023, DESY

25

CEPC Operation Plan and Goals in TDR

	F		SR	Lumi. pe	er IP	Integrated Lumi.	Total	Total	no. of		
	FCC-ee Run Plan										
	Phase	hase Run duration Center-of-mass Integrated Event (years) Energies (GeV) Luminosity (ab ⁻¹) Statistics									
	FCC-ee-Z	4	8	8–95	1	50	3×10^{12} visible Z decays 10^8 WW events		$\approx \frac{\Delta_{\text{LEP,S}}}{500}$		
	FCC-ee-W	2	15	8-162		12					
	FCC-ee-H	3		240		5	10 ⁶ ZH events				
	FCC-ee-tt	C-ee-tt 5 345–3		5-365		.5 $10^6 t\bar{t}$ events		events			
Т	360 5			0.0		0.2	1.0	0.07	× 10		
			30	0.5		0.13	0.65	0.4 :	× 10 ⁶		
*	Higgs is the top	priority. The CE	EPC will comr	nence its opera	ation with a	focus on Higgs					

Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies.

*** Calculated using 3,600 hours per year for data collection.

CEPC-SppC Proposals-J. Gao

ICFA Seminar 2023, Nov. 30, 2023, DESY

Gudrid Moortgat-Pick

4

What's the role of polarization?

'Gedankenexperiment' if start with Z-run instead of Higgs@CEPC:

Statistical uncertainty of A_{LR}

Irles et al., arXiv: 190500220

- If only polarized electrons:
 - $\rightarrow \Delta A_{LR}$ depends mainly on polarimeter resolution $\Delta P/P \sim 0.5-1\%$
- If combined with run@250: polarimetry ΔP/P reduced by order of magnitude via WW channel....
- If both beams are polarized: apply Blondel scheme: $A_{LR} = f(\sigma_{LR}, \sigma_{RL}, \sigma_{LL}, \sigma_{RR})$

 \rightarrow uncertainty depends on $\Delta \sigma_{LL}$, $\Delta \sigma_{LR}$, $\Delta \sigma_{RL}$, $\Delta \sigma_{RR}$ not on $\Delta P/P$!

 \rightarrow Some running in LL and RR required: ~10% of time

- Results comparable with 250 run.....
 - Z-run could already provide deep insights in lepton universality, fermion properties, etc. if polarized beams are available!

Conclusions

- A dedicated Z-run@CEPC has a great physics potential
 - resolve discrepancy between A_{LR}(I) and A_{FB} (b) and improve world av.!
 - significant increase of precision on $sin^2\theta_{eff}$
 - high sensitivity to effects of new physics (SUSY, Z', etc.)
 - improved measurements of α_{s} , Γ_{l} , R_{b} , rare Z-decays, B decays,...

Z-factory measurements could be a great help for pointing to the nature of any new physics observable at HL-LHC (or elsewhere) !

- Technical requirements
 - polarization (best both beams) and high luminosity are mandatory

Z-run serves as telescope to new physics at high as well as lower energies..... start a.s.a.p. is of extremely high physics gain!

2024 EU Edition CEPC@Marseille, 10.4.2024 Gudrid Moortgat-Pick