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I. Context & Questions



3.1

Was There an Electroweak Phase Transition ?

• Interesting in its own right

• Key ingredient for EW baryogenesis

• Source of gravitational radiation 
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Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,
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which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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• What is the landscape 
of potentials and their 
thermal histories?

• How can we probe this 
T > 0 landscape 
experimentally ?

• How reliably can we 
compute the 
thermodynamics ?

How did we 
end up here ?
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High-T SM Effective Potential
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The Electroweak Phase Transition: A Collider Target
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We revisit the theory and phenomenology of scalar electroweak multiplet thermal dark matter.
We derive the most general, renormalizable scalar potential, assuming the presence of the Standard
Model Higgs doublet, H, and an electroweak multiplet � of arbitrary SU(2)L rank and hypercharge,
Y . We show that, in general, the �-H Higgs portal interactions depend on three, rather than two
independent couplings as has been previously considered in the literature. For the phenomenologi-
cally viable case of Y = 0 multiplets, we focus on the septuplet and quintuplet cases, and consider
the interplay of relic density and spin-independent direct detection cross section. We show that
both the relic density and direct detection cross sections depend on a single linear combination of
Higgs portal couplings, �e↵ . For �e↵ ⇠ O(1), present direct detection exclusion limits imply that
the neutral component of a scalar electroweak multiplet would comprise a subdominant fraction of
the observed DM relic density.
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First Order EWPT from BSM Physics
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Figure 3. Schematic temperature dependence of the effective potential.

at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:
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where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes
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When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)
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II. Model Illustrations

7.1

Simple Higgs portal models:

• Real gauge singlet (SM + 1)

• EW Multiplets (SM + 3,4,…)
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Simplest Extension

Standard Model + real singlet scalar

Profumo, R-M, Shaugnessy JHEP 0708 (2007) 010

Z2Z2\
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Simplest Extension

Standard Model + real singlet scalar

JHEP08(2007)010

sufficient condition for having a stable neutral scalar that can be the DM, as first noticed

ref. [25]. We emphasize, however, that imposing a tree-level Z2 symmetry on the potential

(a1 = 0 = b3) does not imply a vanishing singlet vev. Only when x0 = 0 is it possible to

have a stable neutral scalar. While this assumption is implicit in many previous analyses,

we find that models with x0 != 0 arise copiously in the present framework.

The fields (h, s) describing fluctuations about the vevs are defined by H0 = (v0+h)/
√

2

and S = x0 + s, at T = 0. The corresponding entries in the mass matrix are given by4
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where the upper (lower) sign corresponds to m1 (m2).

For future reference it is useful to relate the parameters in V to those appearing in

the notation of ref. [20], where the potential is written in terms of the zero-temperature,

shifted field s only. One has
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4We discuss corrections resulting from the full Coleman-Weinberg effective potential below. These

corrections lead to numerically small shifts to these conditions.
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Phenomenology

m1,2 ; q ; hi hj hk couplings

EWPT

<S>

TC , GN , Gsph , …Profumo, R-M, Shaugnessy JHEP 0708 (2007) 010

Z2Z2\



Exotic Higgs Decays & EWPT

9.1

Exotic decays
h1 à h2 h2
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Exotic decays
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III. Electroweak Phase Transition

• Perturbative study

• Lattice benchmark (new)



Light Singlets: Exotic Higgs Decays

11

J. Kozaczuk, MR-M, J. Shelton 1911.10210
See also: Carena et al 1911.10206, Carena
et al 2203.08206, Wang et al 2203.10184, 

EWPT viable: 
numerical

EWPT viable: 
Semi analytic 
à nucleation 
decisive

One loop perturbation theory

|sin q|

m2



New: Lattice + EFT @ T > 0

12.1

J. Kozaczuk, MR-M, J. Shelton 1911.10210

One loop PT

Two-loop PT: 
3d EFT

Nucleation

L. Niemi, MJRM, G. Xia 2404.NNNNN

m2 m2 / GeV

|sin q|



New: Lattice + EFT @ T > 0

12.2

J. Kozaczuk, MR-M, J. Shelton 1911.10210

Crossover

First OrderOne loop PT

Lattice study
Two-loop PT: 
3d EFT

Nucleation

L. Niemi, MJRM, G. Xiao 2404.NNNNN

m2 m2 / GeV

|sin q|



New: Lattice + EFT @ T > 0

12.3

J. Kozaczuk, MR-M, J. Shelton 1911.10210

Crossover

First OrderOne loop PT

Lattice study
Two-loop PT: 
3d EFT

Nucleation

L. Niemi, MJRM, G. Xiao 2404.NNNNNSmall portal couplings 

à FO EWPT unlikely 

m2 m2 / GeV

|sin q|



Light Singlets: Exotic Higgs Decays

13

Carena et al 1911.10206

a2

b4

One loop perturbation theoryZ2 breaking
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IV. Phenomenology

• Prompt h2 decays

• Displaced h2 decays

• Invisible h1 decays



Light Singlets: Exotic Higgs Decays

15.1

J. Kozaczuk, MR-M, J. Shelton 1911.10210
See also: Carena et al 1911.10206, Carena
et al 2203.08206, Wang et al 2203.10184, 

Prompt decays:    h2 à h1 h1 à AA BB

EWPT viable: 
numerical LHC: 2019 & 

HL

Future e+e-

m2

|sin q|



Light Singlets: Exotic Higgs Decays

15.2

J. Kozaczuk, MR-M, J. Shelton 1911.10210
See also: Carena et al 1911.10206, Carena
et al 2203.08206, Wang et al 2203.10184, 

Prompt decays:    h2 à h1 h1 à AA BB

EWPT viable: 
numerical LHC: 2019 & 

HL

Future e+e-

m2

|sin q|

Other 
probes?
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Z2 breaking: prompt h2 decays

Carena et al (Snowmass) 2203.08206

Current Future
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16.2

Z2 breaking: prompt h2 decays Explicit Z2
breaking

Carena et al (Snowmass) 2203.08206

Current Future

Spont Z2
breaking a2

b4
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16.3

Z2 breaking: prompt h2 decays Explicit Z2
breaking

Carena et al (Snowmass) 2203.08206

Current Future

Spont Z2
breaking a2

b4

Consistent w/ EFT + lattice 
thermo but nucleation ?

Consistent w/ EFT 
+ lattice ? Tiny a2



Light Singlets: Exotic Higgs Decays

17

J. Wang et al (Snowmass) 2203.10184

h1 à h2 h2 à 4b (prompt)

EWPT viable: 
numerical

CEPC 4b



Light Singlets: Exotic Higgs Decays
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W. Liu, A. Yang, H. Sun, PRD 105 (2022) 115040

h1 à h2 h2 à 4j  Displaced (LLP) 
EWPT viable: 
numerical

q  = 10 -4 q  = 10 -6

CMS Timing

m2 m2
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J. Wang et al (Snowmass) 2203.10184

h1 à h2 h2 à 4b (prompt)

EWPT viable: 
numerical

CEPC 4b 
Prompt

W. Liu, A. Yang, H. Sun, 
PRD 105 (2022) 115040

CEPC LLP Searches ? 1 mm

1 m

100 m
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J. Kozaczuk, MR-M, J. Shelton 1911.10210

Invisible decays

|sin q|

m2 m2
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VI. Outlook

• Determining the thermal history of EWSB is key 
challenge at the forefront of high energy physics 
& cosmology

• Exotic Higgs decays provide a unique probe of a 
first order EW phase transition, with implications 
for baryogenesis and gravitational waves

• Robust theory requires close interplay of lattice 
computations with state-of-the-art perturbative 
studies (EFT)

• Exciting experimental prospects ahead with 
complementary searches at the HL-LHC and 
future e+e- colliders
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VI. Outlook

• Determining the thermal history of EWSB is key 
challenge at the forefront of high energy physics 
& cosmology

• Exotic Higgs decays provide a unique probe of a 
first order EW phase transition, with implications 
for baryogenesis and gravitational waves

• Robust theory requires close interplay of lattice 
computations with state-of-the-art perturbative 
studies (EFT)

• Exciting experimental prospects ahead with 
complementary searches at the HL-LHC and 
future e+e- colliders

谢谢！
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Was There an EW Phase Transition? 

B2

1

b4

!
1

2
a2v

2
0 !m2

!

"
<

1

2
m2

Hv
2
0: (7)

Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,

1

2
m2

H >
1

2

a2
b4

!
1

2
a2v

2
0 !m2

!

"
; (8)

which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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0.0

0.5

1.0

1.5

2.0

m

b 4

mH 125 GeV, a2 1.07

EW vacuum
unstable

AB

2 1 0 1 2

0.0
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m

b 4
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a2

EW vacuum
unstable

A B

FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.

HIREN H. PATEL AND MICHAEL J. RAMSEY-MUSOLF PHYSICAL REVIEW D 88, 035013 (2013)

035013-4

Extrema can evolve differently as T evolves à
rich possibilities for symmetry breaking

Higgs

BSM S
ca

lar

Higgs phase

VEFF (H, F)

Higgs precision tests

SM Higgs BSM Higgs

BSM Higgs

Direct Production

Bubble Collisions

Grav Radiation

• How heavy or light can F
be ?

• How coupled to H ?

• Can it be discovered at 
the LHC or beyond ? 

Exotic Higgs Decays
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Challenges for Theory

• I.R. problem: poor 
convergence

• Thermal resummations

• Gauge Invariance 
(radiative barriers)

• RG invariance at T>0

Perturbation theory Non-perturbative (I.R.) 

• Computationally and labor 
intensive

BSM proposals 
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EFT 1: Thermodynamics

Matching: Two Elements

Dimensional Reduction

Thermal Loops

t �! i⌧ (55)

G�(⌧ ; ~x� ~x0) ⌘ G(0, i⌧ ; ~x� ~x0)� (56)

G�(⌧ ;~r) = G�(⌧ + �;~r) (57)

�
2+m

2
�
G(t, t

0
; ~x� ~x0) = ��

4
(x) (58)

~r = ~x� ~x
0

(59)

✓
@
2

@⌧ 2
+r2 �m

2

◆
G�(⌧ ;~r) = ��

3
(r)�(⌧) (60)

G�(⌧ ;~r) =
1

�

X

n

Z
d
3
k

(2⇡)3
e
�i(!n⌧�~k·~r) G�(

~k,!n) (61)

G�(
~k,!n) =

1

!2
n
+ ~k2 +m2

(62)

!n =

8
><

>:

2n⇡

�
, bosons

(2n+1)⇡

�
, fermions

(63)

Z
d
4
k

(2⇡)4
�! 1

�

X

n

Z
d
3
k

(2⇡)3
(64)

�[�c] = Scl(�c) +
i~
2
Tr ln G

�1
(65)

Scl[�] =

Z
d
4
x [ @

µ
�@µ�� V0(�) ] (66)

5

All integrals are 3D with prefactor T  à Rescale fields, couplings…

• j 24d = T j 23d
• T l 4d = l 3d  

Equate Greens functions

Field Quartic coupling



Gravitational Waves
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A. Addazi, SPCS 2023

Taiji, Tianqin
similar



Gravitational Waves

B6

EWPT laboratory for GW micro-physics: colliders can probe 
particle physics responsible for non-astro GW sources à test 
our framework for GW microphysics at other scales 

Taiji, Tianqin
similar

A. Addazi, SPCS 2023
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BSM EWPT: Inter-frontier Connections

Phase 
Diagram

Collider 
Signatures

GW 
Signals

Robust theory: 
EFT + lattice

Hydro: 
a , b / H*

Observables: 
model specific

Mapping
Combined 
reach


