Testing Bell inequalities in W boson pair production at Higgs factory

Hao Zhang

Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences For The 2024 European Edition of the International Workshop on the Circular Electron-Positron Collider (CEPC), 09th Apr 2024, Marseille, France

中国科学院高能物理研究所理论物理室

An＂Old＂Physics

Can Quantum－Mechanical Description of Physical Reality Be Considered Complete？
A．Einstein，B．Podolsky and N．Rosen，Institute for Advanced Study，Princeton，New Jersey
（Received March 25，1935）

Abstract

In a complete theory there is an element corresponding to each element of reality．A sufficient condition for the reality of a physical quantity is the possibility of predicting it with certainty，without disturbing the system．In quantum mechanics in the case of two physical quantities described by non－commuting operators，the knowledge of one precludes the knowledge of the other．Then either（1） the description of reality given by the wave function in quantum mechanics is not complete or（2）these two quantities cannot have simultaneous reality．Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that if （1）is false then（2）is also false．One is thus led to conclude that the description of reality as given by a wave function is not complete．

Albert Einstein （1879／03／14－1955／04／18）

Boris Yakovlevich Podolsky
$\left(1896 / 06 / 29_{2} 1966 / 11 / 28\right)$

Nathan Rosen （1909／03／22－1995／12／18）

An＂Old＂Physics

What is the essential different between a quantum theory and a theory based on determinism？

John Stewart Bell（1928／07／28－1990／10／01）
3

An＂Old＂Physics

Entanglement：the more we know about the parts， the less we know about the whole system！

$$
\mathbf{E}(Q S)+\mathbf{E}(R S)+\mathbf{E}(R T)-\mathbf{E}(Q T) \leq 2
$$

（for Local Hidden Variable Models）

CHSH（John Clauser，Michael Horne，Abner Shimony，Richard Holt）inequality

The Verification

© Nobel Prize Outreach．Photo： Stefan Bladh
Plain Aspect \dagger
Prize share：1／3

© Nobel Prize Outreach．Photo： Stefan Bladh John F．Causer Prize share： $1 / 3$

© Nobel Prize Outreach．Photo： Stefan Bladh
Anton Zeilinger
Prize share： $1 / 3$

The Label Prize in Physics 2022 was awarded jointly to Main Aspect， John T．Gluuser and Anton Zeilinger＂＂ore experiments with entangled photons，establishing the violation of \mathscr{B} ell inequalities and pioneering quantum information science＂

中国科学院高能物理研究所理论物理室

The Verification in particle physics

－Neutral pion system
－Neutral Kaon system
－Other hadron systems
－．．．
－Testing with higher energy？

The Verification at the EW scale

- It is not easy, why?

\qquad

The Verification at the EW scale

"A quantitatively characterization of the degree of the entanglement between the subsystems of a system in a mixed state, is not unique! "
"Finally, we prove that the weak membership problem for the convex set of separable bipartite density matrices is NP-HARD."
——Leonid Gurvits

The Verification at the EW scale

Even the violation of the CHSH inequalities，is not equivalent to the non－existence of LHVM！

－To＂solve＂the problem，people introduce some smart criterions such as the CONCURRENCE．（For a nice review，see R． Herodecki，P．Herodecki，M．Herodecki，K．Herodecki，Rev．Mod． Phys． 81 （2009）865）
－On the other hand，it is shown that asymptotic violation of the CHSH inequality is equivalent to distillability．（Means that some pure－state entanglement could be extracted by LOCC）

The Verification at the EW scale

－For 2－qubit system，it is solved by Horodecki et al 1995.
－The most popular topic：$t \bar{t}$ production at the LHC．
－The result from the ATLAS collaboration．

$$
D \equiv-3\left\langle\cos \varphi\left(\ell_{t}^{+} \ell_{\bar{t}}^{-}\right)\right\rangle
$$

ATLAS Collaboration，arXiv：2311．07288［hep－ex］；
Y．Afik and J．R．M．de Nova，Eur．Phys．J．Plus 136 （2021） 907.

中国科学院高能物理研究所理论物理室
Theoretical Physics Division，
Institute of High Energy Physics，CA

The Verification at the EW scale

nonlocality

for mixed states

Bell inequalities violation

WW production at Higgs factory

－The initial state is a mixed state
－（Generalized）Bell inequality as a test
Observables：\hat{A}_{1}（Alice 1），\hat{A}_{2}（Alice 2），\hat{B}_{1}（Bob 1），\hat{B}_{2}（Bob 2）
The results of measurement $\in \mathbb{Z}_{3}$

$$
\begin{aligned}
& \quad \max _{\hat{A}_{1}, \hat{A}_{2}, \hat{B}_{1}, \hat{B}_{2}} \mathcal{I}_{3}\left(\hat{A}_{1}, \hat{A}_{2} ; \hat{B}_{1}, \hat{B}_{2}\right)>2 \\
& \mathcal{I}_{3} \equiv+ \\
& \quad\left[P\left(A_{1}=B_{1}\right)+P\left(B_{1}=A_{2}+1\right)\right. \\
& \left.\quad+P\left(A_{2}=B_{2}\right)+P\left(B_{2}=A_{1}\right)\right] \\
& -\left[P\left(A_{1}=B_{1}-1\right)+P\left(B_{1}=A_{2}\right)\right. \\
& \left.\quad+P\left(A_{2}=B_{2}-1\right)+P\left(B_{2}=A_{1}-1\right)\right]
\end{aligned}
$$

Collins－Gisin－Linden－Massar－Popescu（CGLMP）inequality

WW production at Higgs factory

－The initial state is a mixed state
－（Generalized）Bell inequality
－9－dim but not 4－dim Hilbert space．

$3 \times-2>2 x 2$

－QuNit vs．qubit？
－＂the results for large N are shown to be more resistant to noise with a suitable choice of the observables＂

D．Kaszlikowski，P．Gnaciński，M．Żukowski，W．Miklaszewski，A．Zeilinger，Phys．Rev．Lett．85， 4418 （2000）； T．Durt，D．Kaszlikowski，M．Żukowski，Phys．Rev．A 64， 024101 （2001）；
J．－L．Chen，D．Kaszlikowski，L．C．Kwek，C．H．Oh，M．Żukowski，Phys．Rev．A 64， 052109 （2001）；
D．Collins，N．Gisin，N．Linden，S．Massar，S．Popescu，Phys．Rev．Lett．88， 040404 （2002）．

WW production at Higgs factory

－The density matrix（some technical details．．．）

$$
\begin{aligned}
\hat{\rho}_{W W} \propto & \mathcal{M}\left(e^{+} e^{-} \rightarrow W^{+} W^{-}\right) \hat{\rho}_{e^{+} e^{-}} \mathcal{M}\left(e^{+} e^{-} \rightarrow W^{+} W^{-}\right)^{\dagger} \\
\hat{\rho}_{W}= & \frac{1}{3} \hat{I}_{3}+d^{i} \hat{S}_{i}+q^{i j} \hat{S}_{\{i j\}}, \quad i, j=1,2,3 \\
\hat{\rho}_{W W}= & \frac{1}{9} \hat{I}_{9}+\frac{1}{3} d_{+}^{i} \hat{S}_{i}^{+} \otimes \hat{I}_{3}+\frac{1}{3} d_{-}^{i} \hat{I}_{3} \otimes \hat{S}_{i}^{-} \\
& +\frac{1}{3} q_{+}^{i j} \hat{S}_{\{i j\}}^{+} \otimes \hat{I}_{3}+\frac{1}{3} q_{-}^{i j} \hat{I}_{3} \otimes \hat{S}_{\{i j\}}^{-} \\
& +C_{d}^{i j} \hat{S}_{i}^{+} \otimes \hat{S}_{j}^{-}+C_{d, q}^{i, j k} \hat{S}_{i}^{+} \otimes \hat{S}_{\{j k\}}^{-} \\
& +C_{q, d}^{i j, k} \hat{S}_{\{i j\}}^{+} \otimes \hat{S}_{k}^{-}+C_{q}^{i j, k \ell} \hat{S}_{\{i j\}}^{+} \otimes \hat{S}_{\{k \ell\}}^{-}
\end{aligned}
$$

WW production at Higgs factory

－The density matrix（some technical details．．．）is＂easy＂to calculate

$$
\begin{align*}
& d_{+}^{2}=d_{-}^{2}=q_{+}^{12}=q_{+}^{23}=q_{-}^{12}=q_{-}^{23}=C_{d}^{12}=C_{d}^{21} \\
& =C_{d}^{23}=C_{d}^{32}=C_{d, q}^{1,12}=C_{d, q}^{1,23}=C_{d, q}^{2,31}=C_{d, q}^{2,11}=C_{d, q}^{2,22} \\
& =C_{d, q}^{2,33}=C_{d, q}^{3,12}=C_{d, q}^{3,23}=C_{q, d}^{12,1}=C_{q, d}^{23,1}=C_{q, d}^{31,2} \\
& =C_{q, d}^{11,2}=C_{q, d}^{22,2}=C_{q, d}^{33,2}=C_{q, d}^{12,3}=C_{q, d}^{23,3}=C_{q}^{12,31} \\
& =C_{q}^{12,11}=C_{q}^{12,22}=C_{q}^{12,33}=C_{q}^{23,31}=C_{q}^{23,11}=C_{q}^{23,22} \\
& =C_{q}^{23,33}=C_{q}^{31,12}=C_{q}^{31,23}=C_{q}^{11,12}=C_{q}^{11,23}=C_{q}^{11,22} \\
& =C_{q}^{22,12}=C_{q}^{22,23}=C_{q}^{22,11}=C_{q}^{33,12}=C_{q}^{33,23}=C_{q}^{33,31} \\
& =0 \tag{46}
\end{align*}
$$

WW production at Higgs factory

－The density matrix（some technical details．．．）is＂easy＂to calculate

$$
\begin{align*}
& d_{+}^{1}=d_{-}^{1}, d_{+}^{3}=-d_{-}^{3}, q_{+}^{31}=-q_{-}^{31}, q_{+}^{11}=q_{-}^{11}, q_{+}^{22}=q_{-}^{22}, \\
& q_{+}^{33}=q_{-}^{33}, C_{d}^{13}=-C_{d}^{31}, C_{d, q}^{1,31}=-C_{q, d}^{31,1}, \\
& C_{d, q}^{1,11}=C_{q, d}^{11,1}, C_{d, q}^{1,22}=C_{q, d}^{22,1}, C_{d, q}^{1,33}=C_{q, d}^{33,1}, \\
& C_{d, q}^{2,12}=C_{q, d}^{12,2}, C_{d, q}^{2,23}=-C_{q, d}^{23,2}, C_{d, q}^{3,31}=C_{q, d}^{31,3} \\
& C_{d, q}^{3,11}=-C_{q, d}^{11,3}, C_{d, q}^{3,22}=-C_{q, d}^{22,3}, C_{d, q}^{3,33}=-C_{q, d}^{33,3} \\
& C_{q}^{12,23}=-C_{q}^{23,12}, C_{q}^{31,11}=-C_{q}^{11,31}, C_{q}^{31,22}=-C_{q}^{22,31} \\
& C_{q}^{11,33}=C_{q}^{33,11}=-C_{q}^{22,33}=-C_{q}^{33,22} . \tag{47}
\end{align*}
$$

WW production at Higgs factory

－The density matrix（some technical details．．．）is＂easy＂to calculate

WW production at Higgs factory
－The density matrix（some technical details．．．）is＂easy＂to calculate
WWM Production at Higogs factory
－The density matrix（some technical details．．．）is＂easy＂to calculate


```
*
```

－The density matrix（some technical details．．．）is＂easy＂to calculate

WW production at Higgs factory
－The density matrix（some technical details．．．）is＂easy＂to calculate

.

2
－The density matrix（some technic

$$
\bullet \beta \rightarrow 0 ?
$$

－The density matrix（some technic
－The density matrix（some technic

－The density matrix（some technic
－The density matrix（some technic
－The density matrix（some technic
$\bullet \beta \rightarrow 0 ?$
\square
WWM Production at Higogs factory
－The density matrix（some technical details．．．）is＂easy＂to calculate

Abstract

The density matrix（some technical details．．．）is＂easy＂to calcula
－The density matrix（some technical details．．．）is＂easy＂to calculate $-$

$$
0^{2}
$$

WW production at Higgr factory
• The density matrix（some technical details．．．）is＂easy＂to calculate
• $\beta \rightarrow 0$ ？
• s－channel is p－wave and suppressed by a factor of β ．
WWM production at Higgo factory
• The density matrix（some technical details．．．）is＂easy＂to calculate
• $\beta \rightarrow 0$ ？
• s－channel is p－wave and suppressed by a factor of β ．

production at rigors factory
production at rigors factory
production at rigors factory

\qquad

 production at Higogs factory
 \boldsymbol{T}

WW production at Higgs factory

－The density matrix（some technical details．．．）is＂easy＂to calculate
－$\beta \rightarrow 0$ ？
－s－channel is p－wave and suppressed by a factor of β ．
－t－channel is purely left－handed current so that the initial state is selected by the（weak）interaction to be a pure state $\left|e_{L}^{-}\right\rangle \otimes\left|e_{L}^{+}\right\rangle$．
．

 ```*``` ．

\qquad

WW production at Higgs factory

－The density matrix（some technical details．．．）is easy to calculate
－$\beta \rightarrow 0$ ？

$$
\begin{aligned}
& \rho_{W^{+}} \propto\left(\begin{array}{ccc}
\frac{(3-\cos \theta)}{4} \cos ^{2} \frac{\theta}{2} & -\frac{(1-\cos \theta) \sin \theta}{4 \sqrt{2}} & -\frac{1}{8} \sin ^{2} \theta \\
-\frac{(1-\cos \theta) \sin \theta}{4 \sqrt{2}} & \frac{1}{8}(3+\cos 2 \theta) & -\frac{(1+\cos \theta) \sin \theta}{4 \sqrt{2}} \\
-\frac{1}{8} \sin ^{2} \theta & -\frac{(1+\cos \theta) \sin \theta}{4 \sqrt{2}} & \frac{(3+\cos \theta)}{4} \sin ^{2} \frac{\theta}{2}
\end{array}\right)=\frac{1}{2}\left|v_{1}\right\rangle\left\langle v_{1}\right|+\frac{1}{2}\left|v_{2}\right\rangle\left\langle v_{2}\right| \\
& \left|v_{1}\right\rangle=\frac{1+\cos \theta}{\sqrt{3+\cos 2 \theta}}|+\rangle-\frac{1-\cos \theta}{\sqrt{3+\cos 2 \theta}}|-\rangle \\
& \left|v_{2}\right\rangle=-\frac{(1-\cos \theta) \sin \theta}{\sqrt{2} \sqrt{3+\cos 2 \theta}}|+\rangle+\frac{\sqrt{3+\cos 2 \theta}}{2}|0\rangle-\frac{(1+\cos \theta) \sin \theta}{\sqrt{2} \sqrt{3+\cos 2 \theta}}|-\rangle \\
& \left|v_{3}\right\rangle=\left(\frac{1-\cos \theta}{2}\right)|+\rangle+\frac{\sin \theta}{\sqrt{2}}|0\rangle+\left(\frac{1+\cos \theta}{2}\right)|-\rangle
\end{aligned}
$$

WW production at Higgs factory

－The density matrix（some technical details．．．）is easy to calculate
－$\beta \rightarrow 0, \infty$ are not very good approximations．

$$
\begin{aligned}
& \sqrt{s}=161 \mathrm{GeV} \\
& \sqrt{s}=180 \mathrm{GeV} \\
& \sqrt{s}=201 \mathrm{GeV} \\
& \sqrt{s}=243 \mathrm{GeV} \\
& \sqrt{s}=353 \mathrm{GeV} \\
& \sqrt{s}=515 \mathrm{GeV} \\
& \sqrt{s} \rightarrow \infty
\end{aligned}
$$

－

F

中国科学院高能物理研究所理论物理室

WW production at Higgs factory

－How to measure it at Higgs factory？？？
－＂Measuring＂the polarization direction of the W boson．

\qquad

```
    *
.




\title{
路
}
(

\begin{tabular}{l} 
\\
\hline \\
\hline
\end{tabular}

\begin{abstract}

\end{abstract}

（



f

WW production at Higogs factory
－How to measure it at Hogs factory？？？
• Measuring＂the polarization direction of the W boson．
－How to measure it at Hogs factory？？？
－How to measure it at Hogs factory？？？

－How to measure it at Hogs factory？？？
－How to measure it at Hogs factory？？？
－How to measure it at Hogs factory？？？
－How to measure it at Hogs factory？？？
WW production at Highs factory
• How to measure it at Hogs factory？？？
•＂Measuring＂the polarization direction of the W boson．

\section*{WW production at Higgs factory}
－How to measure it at Higgs factory？？？
－＂Measuring＂the polarization direction of the W boson．


Real W polarization

\section*{WW production at Higgs factory}
－How to measure it at Higgs factory？？？
－＂Measuring＂the polarization direction of the W boson．
なで


Measured W polarization


4

\section*{WW production at Higgs factory}
－How to measure it at Higgs factory？？？
－＂Measuring＂the polarization direction of the W boson．
－Projection operators of the spin eigenstates：
\[
\hat{\Pi}_{\mathbf{n}}=\frac{1}{2}\left(\hat{S}_{\mathbf{n}}+\hat{S}_{\mathbf{n}}^{2}\right)
\]

\section*{WW production at Higgs factory}
- Collider phenomenology


\section*{WW production at Higgs factory}
－Collider phenomenology：from dilepton channel to semi－leptonic channel．
－Circular polarization \(\rightarrow\) linear polarization．
\[
\hat{\Pi}_{\mathbf{n}}=\hat{I}_{3}-\hat{S}_{\mathbf{n}}^{2}
\]



27

\section*{WW production at Higgs factory}
－Collider phenomenology：from dilepton channel to semi－leptonic channel．
－Circular polarization \(\rightarrow\) linear polarization．
\[
\begin{aligned}
\mathscr{F}_{3}\left(\hat{S}_{\vec{a}_{1}}, \hat{S}_{\vec{a}_{2}} ; \hat{S}_{\left\{x_{3} y_{3}\right\}}, \hat{S}_{\left\{x_{4} y_{4}\right\}}\right) \equiv & +\left[P\left(S_{\vec{a}_{1}}=S_{\left\{x_{3} y_{3}\right\}}\right)+P\left(S_{\left\{x_{3} y_{3}\right\}}=S_{\vec{a}_{2}}+1\right)+P\left(S_{\vec{a}_{2}}=S_{\left\{x_{4} y_{4}\right\}}\right)+P\left(S_{\left\{x_{4} y_{4}\right\}}=S_{\vec{a}_{1}}\right)\right] \\
& -\left[P\left(S_{\vec{a}_{1}}=S_{\left\{x_{3} y_{3}\right\}}-1\right)+P\left(S_{\left\{x_{3} y_{3}\right\}}=S_{\vec{a}_{2}}\right)+P\left(S_{\vec{a}_{2}}=S_{\left\{x_{4} y_{4}\right\}}-1\right)+P\left(S_{\left\{x_{4} y_{4}\right\}}=S_{\vec{a}_{1}}-1\right)\right]
\end{aligned}
\]

\section*{WW production at Higgs factory}
－Calculating the generalized Bell observable
\[
\begin{aligned}
& P\left(S_{\vec{a}_{1}}=S_{\left\{x_{3} y_{3}\right\}}\right)=\sum_{\lambda=-1}^{1} \operatorname{Tr}\left[\hat{\rho}_{W W} \hat{\Pi}_{\left|S_{\vec{a}_{1}}=\lambda, S_{\left\{x_{3} y_{3}\right\}}=\lambda\right\rangle}\right] \\
& =\operatorname{Tr}\left[\hat{\rho}_{W W} \cdot \hat{\Pi}_{\vec{a}_{1}}\left(S_{\vec{a}_{1}}=-1\right) \otimes \hat{\Pi}_{x_{3} y_{3}}\left(S_{\left\{x_{3} y_{3}\right\}}=-1\right)\right] \\
& +\operatorname{Tr}\left[\hat{\rho}_{W W} \cdot \hat{\Pi}_{\vec{a}_{1}}\left(S_{\vec{a}_{1}}=1\right) \otimes \hat{\Pi}_{x_{3} y_{3}}\left(S_{\left\{x_{3} y_{3}\right\}}=1\right)\right] \\
& +\operatorname{Tr}\left[\hat{\rho}_{W W} \cdot \hat{\Pi}_{\vec{a}_{1}}\left(S_{\vec{a}_{1}}=0\right) \otimes \hat{\Pi}_{x_{3} y_{3}}\left(S_{\left\{x_{3} y_{3}\right\}}=0\right)\right] \\
& =1-2 q_{i j}^{-} \epsilon_{3 i} \epsilon_{3 j}-2 C_{i, j k}^{d q} a_{1 i}\left(\epsilon_{1 j} \epsilon_{1 k}-\epsilon_{2 j} \epsilon_{2 k}\right) \\
& +2 C_{i j, k l}^{q} a_{1 i} a_{1 j}\left(-\epsilon_{1 k} \epsilon_{1 l}-\epsilon_{2 k} \epsilon_{2 l}+2 \epsilon_{3 k} \epsilon_{3 l}\right) . \\
& \hat{\Pi}_{\vec{a}_{1}}\left(S_{\vec{a}_{1}}=-1\right)=\frac{1}{2}\left(-\hat{S}_{\vec{a}_{1}}+\hat{S}_{\vec{a}_{1}}^{2}\right), \quad \quad \hat{\Pi}_{x_{3} y_{3}}\left(S_{\left\{x_{3} y_{3}\right\}}=-1\right)=\hat{I}_{3}-\hat{S}_{\hat{\epsilon}_{1}}^{2}, \vec{\epsilon}_{1}=\frac{\hat{x}_{3}+\hat{y}_{3}}{\sqrt{2}}, \\
& \hat{\Pi}_{\vec{a}_{1}}\left(S_{\vec{a}_{1}}=1\right)=\frac{1}{2}\left(\hat{S}_{\vec{a}_{1}}+\hat{S}_{\vec{a}_{1}}^{2}, \quad, \quad \hat{\Pi}_{x_{33}\left(S_{\left\{x_{3} y_{3}\right\}}\right.}, 1\right)=\hat{I}_{3}-\hat{S}_{\vec{e}_{2}}, \quad \vec{\epsilon}_{2}=\frac{\hat{x}_{3}-\hat{y}_{3}}{\sqrt{2}}, \\
& \left.\hat{\Pi}_{\vec{a}_{1}}\left(S_{\vec{a}_{1}}=0\right)=\hat{I}_{3}-\hat{S}_{\vec{a}_{1}}^{2} . \quad \hat{\Pi}_{x_{3} y_{3}\left(S_{\left\{x_{3} y_{3}\right\}}\right.}, 0\right)=\hat{I}_{3}-\hat{S}_{\vec{\epsilon}_{3}}^{2}, \quad \vec{\epsilon}_{3}=\hat{x}_{3} \times \hat{y}_{3} .
\end{aligned}
\]

\section*{WW production at Higgs factory}
－Calculating the generalized Bell observable
\[
\begin{aligned}
\mathcal{I}_{3}\left(\hat{S}_{\vec{a}_{1}}, \hat{S}_{\vec{a}_{2}} ; \hat{S}_{\left\{x_{3} y_{3}\right\}}, \hat{S}_{\left\{x_{4} y_{4}\right\}}\right) & \\
=2 q_{i j}^{-}\left(\omega_{1 i} \omega_{1 j}+\omega_{2 i} \omega_{2 j}-2 \omega_{3 i} \omega_{3 j}\right) & \\
+2 C_{i, j k}^{d q} a_{1 i}\left(2 \epsilon_{1 j} \epsilon_{1 k}-\epsilon_{2 j} \epsilon_{2 k}-\epsilon_{3 j} \epsilon_{3 k}+\omega_{1 j} \omega_{1 k}\right. & \left\langle\mathfrak{n}_{i}^{ \pm}\right\rangle=d_{i}^{ \pm}, \\
\left.\quad-2 \omega_{2 j} \omega_{2 k}+\omega_{3 j} \omega_{3 k}\right) & \left\langle\mathfrak{q}_{i j}^{ \pm}\right\rangle=\frac{2}{5} q_{i j}^{ \pm}, \\
+2 C_{i, j k}^{d q} a_{2 i}\left(-2 \epsilon_{1 j} \epsilon_{1 k}+\epsilon_{2 j} \epsilon_{2 k}+\epsilon_{3 j} \epsilon_{3 k}+2 \omega_{1 j} \omega_{1 k}\right. & \left\langle\mathfrak{n}_{i}^{+} \mathfrak{n}_{j}^{-}\right\rangle=C_{i j}^{d}, \\
\left.\quad-\omega_{2 j} \omega_{2 k}-\omega_{3 j} \omega_{3 k}\right) & \left\langle\mathfrak{q}_{i j}^{+} \mathfrak{q}_{k l}^{-}\right\rangle=\frac{4}{25} C_{i j, k l}^{q}, \\
+6 C_{i j, k l}^{q} a_{1 i} a_{1 j}\left(-\epsilon_{2 k} \epsilon_{2 l}+\epsilon_{3 k} \epsilon_{3 l}-\omega_{1 k} \omega_{1 l}+\omega_{3 k} \omega_{3 l}\right) & \left\langle\mathfrak{n}_{i}^{+} \mathfrak{q}_{j k}^{-}\right\rangle=\frac{2}{5} C_{i, j k}^{d q}, \\
+6 C_{i j, k l}^{q} a_{2 i} a_{2 j}\left(\epsilon_{2 k} \epsilon_{2 l}-\epsilon_{3 k} \epsilon_{3 l}-\omega_{2 k} \omega_{2 l}+\omega_{3 k} \omega_{3 l}\right) & \left\langle\mathfrak{q}_{i j}^{+} \mathfrak{n}_{k}^{-}\right\rangle=\frac{2}{5} C_{i j, k}^{q d} .
\end{aligned}
\]
－We need to choose the directions according the coefficients to maximize the generalized Bell observable．

\section*{WW production at Higgs factory}
－Some details \(\left(e^{+} e^{-} \rightarrow W^{+} W^{-} \rightarrow \ell^{ \pm} \nu j j\right)\)
－ 240 GeV electron－positron collider
－（LO）MADGraph5＿AMC＠NLO＋Pythia8＋FASTJET
－ 2 Exclusive jets with Durham algorithm \(\left(E_{j}>5 \mathrm{GeV},\left|\eta_{j}\right|<3.5\right)\)
－One isolated charged lepton \(\left(e^{ \pm}, \mu^{ \pm}\right)\left(E_{\ell}>15 \mathrm{GeV},\left|\cos \theta_{\ell}\right|<0.98\right)\)
－Missing energy \(\left(\cos \theta_{\ell_{\nu}}<0.2\right)\)
－Reconstructed \(W\) mass \(\left(\left|m_{j j}-m_{W}\right|<20 \mathrm{GeV}\right)\)

\section*{WW production at Higgs factory}
－The result


\section*{WW production at Higgs factory}
－The result


\section*{Conclusion and Discussion}
－We provide a realistic approach to test Bell inequalities in W pair systems using a new set of Bell observables based on measuring the linear polarization of W bosons．
－Our observables depend on only part of the density matrix that can be correctly measured in the semi－leptonic decay mode of W ．
－To our best knowledge，this is the first attempt of testing Bell inequality in a basic qu3it system（beyond qubit）．
－Loopholes？```

