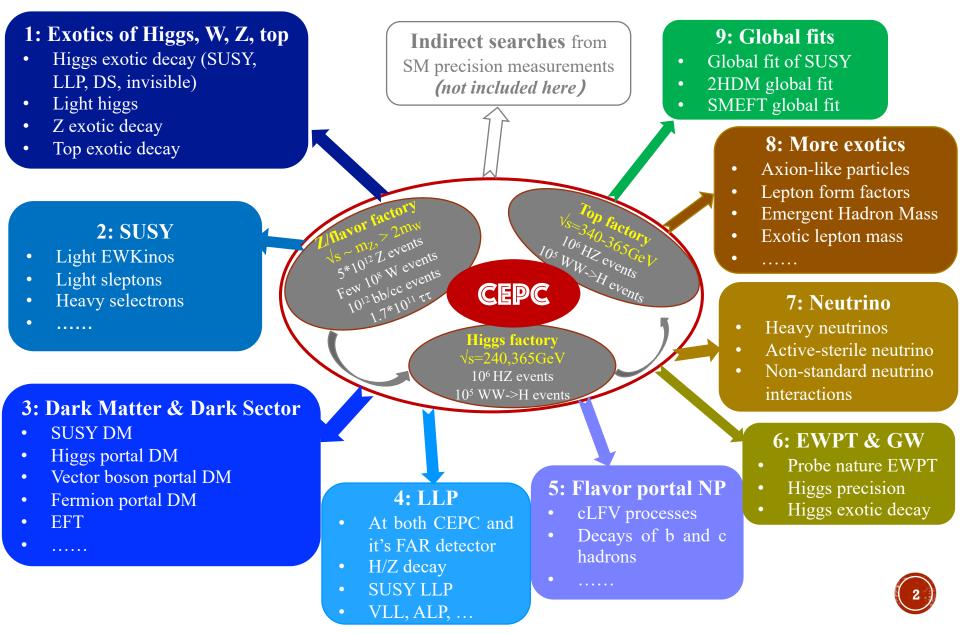
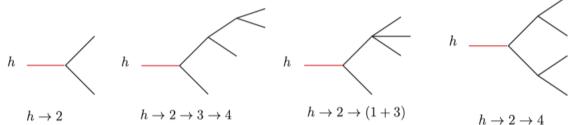


中國科學院為能物記為完施 Institute of High Energy Physics Chinese Academy of Sciences


Status & Progress of the CEPC NP white paper Xuai Zhuang (IHEP)

zhuangxa@ihep.ac.cn

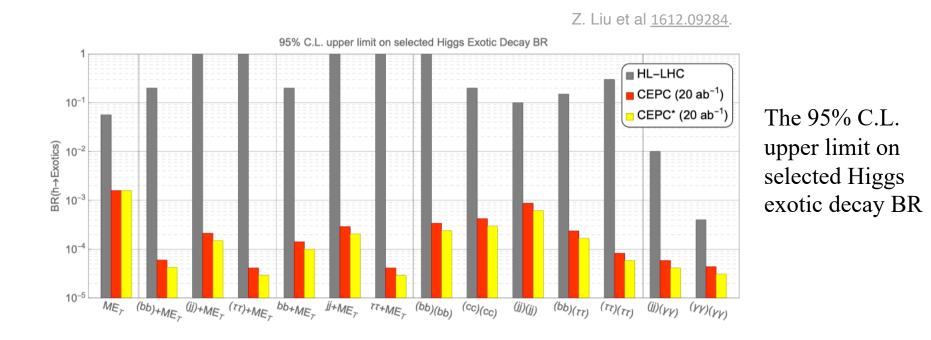
2024 European Edition of the International Workshop on the Circular Electron-Positron Collider, Marseille, FRANCE


Apr. 8-11, 2024

CEPC BSM Physics Program

1. Exotic Higgs/Z/top decays

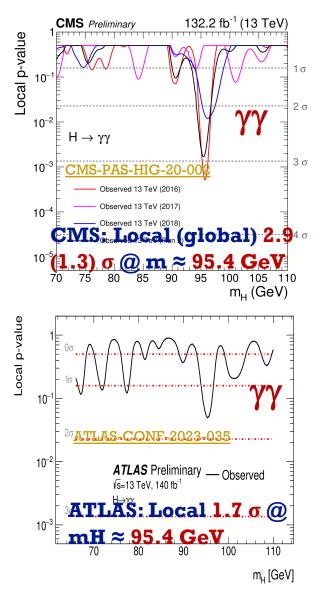
A large class of BSM physics, such as singlet extensions, two Higgs-doublet-models (2HDM), SUSY models, Higgs portals, gauge extensions of the SM, motivates these exotic decay considerations


Representative topologies of the Higgs exotic decays

- Light Higgs are motivated by 2HDM and Axion-like particle models, which can be searched at CEPC well if they exist.
- Exotic Z or top decays are also motivated by many BSM models (ED, Heavy Vector Triplet, ...) and can also be searched at CEPC

BSM Higgs

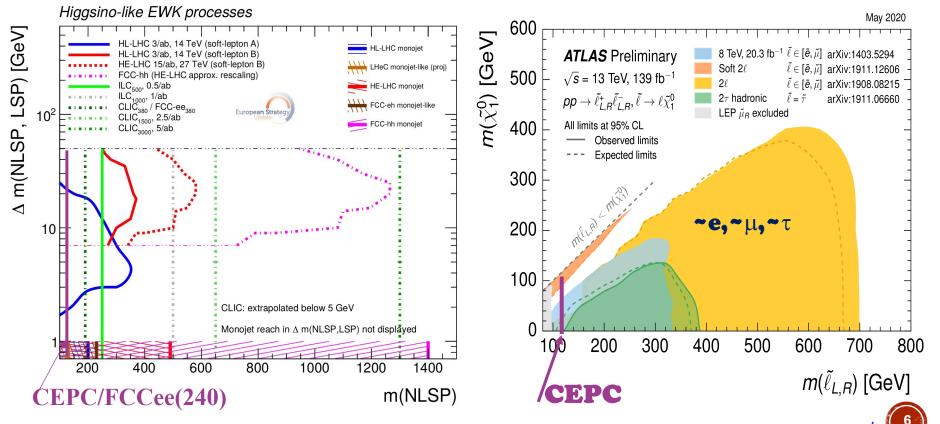
Many BSM models motivate Higgs exotic decay considerations: singlet extensions, 2HDM, SUSY models, Higgs portals, ...



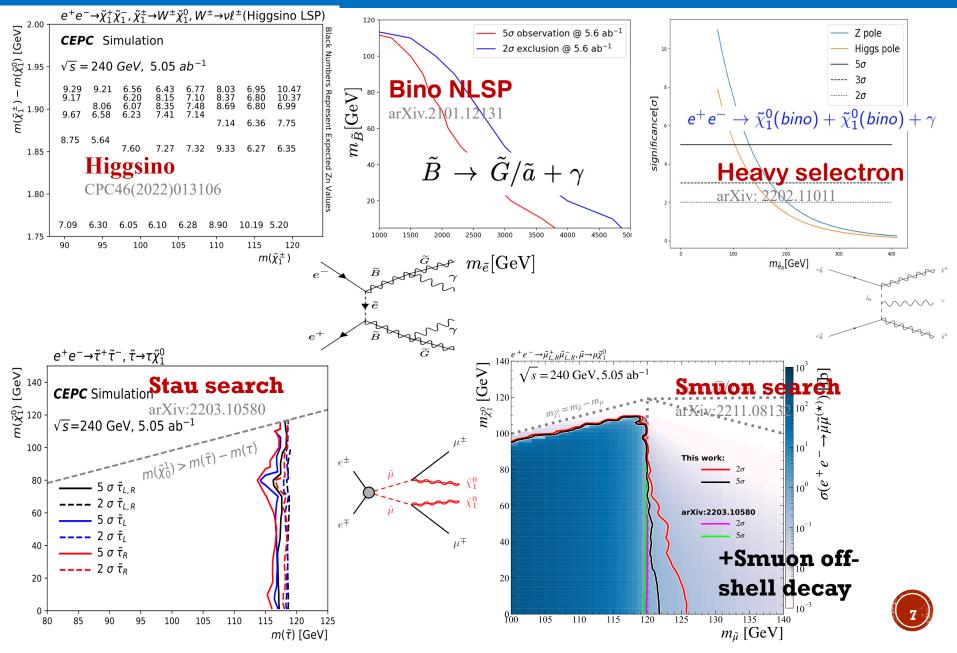
\rightarrow Good sensitivity of exotic Higgs decay from CEPC

Light Higgs

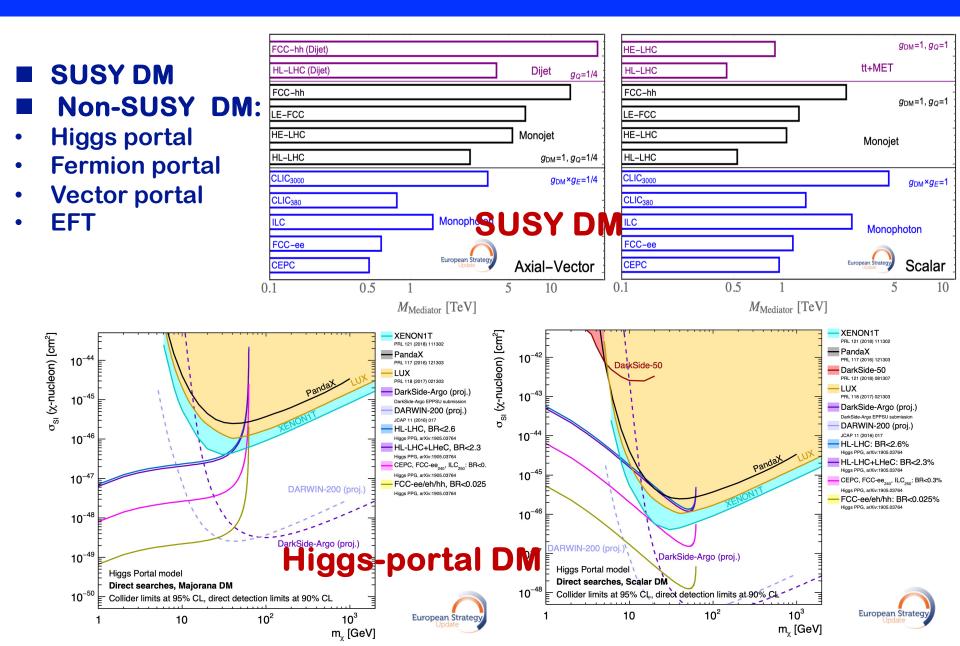
Light Higgs are motivated by 2HDM and Axion-like particle models


Physics opportunities at CEPC (originally for ILC, but equivalent!) Example for discovery potential for new light states: Sensitivity at 250 GeV with 500 fb⁻¹ to a new light Higgs [P. Drechsel et al. '17] $\left(\frac{g_{hZZ}}{g_{H^{\rm SM}ZZ}}\right)$ Indirect LHC sensitivity from measurements of the Higgs at 125 GeV Excluded 0.100 from measured, LEP (mH) LEP recoil, ILC Fh(mH) searches traditional, ILC Γ_h(mH) S95 - LHC limit 0.010 Could Higgs factory probe sensitivity: the Higgs factory sensitivity: **Recoil method** "CMS 0.001 $h \rightarrow bb$ search bump" 60 140 at 95 20 40 80 100 120 160 $M_h/{\rm GeV}$ mH/GeV GeV ⇒ Higgs factory at 250 GeV will explore a large untested region! en from G. Weiglein '18] See Sven's talk

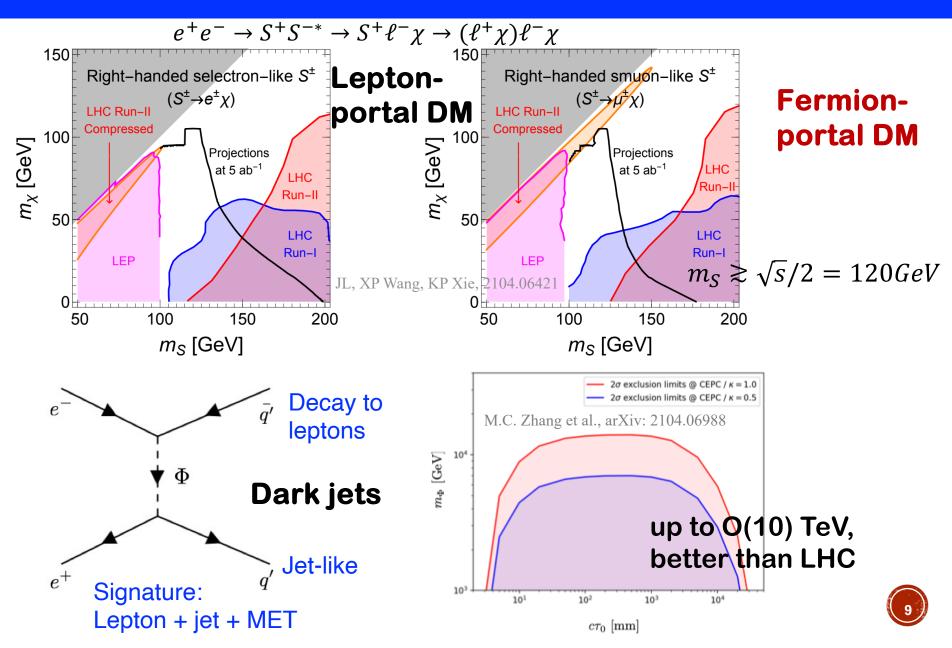
It can be searched at CEPC very well if exists.

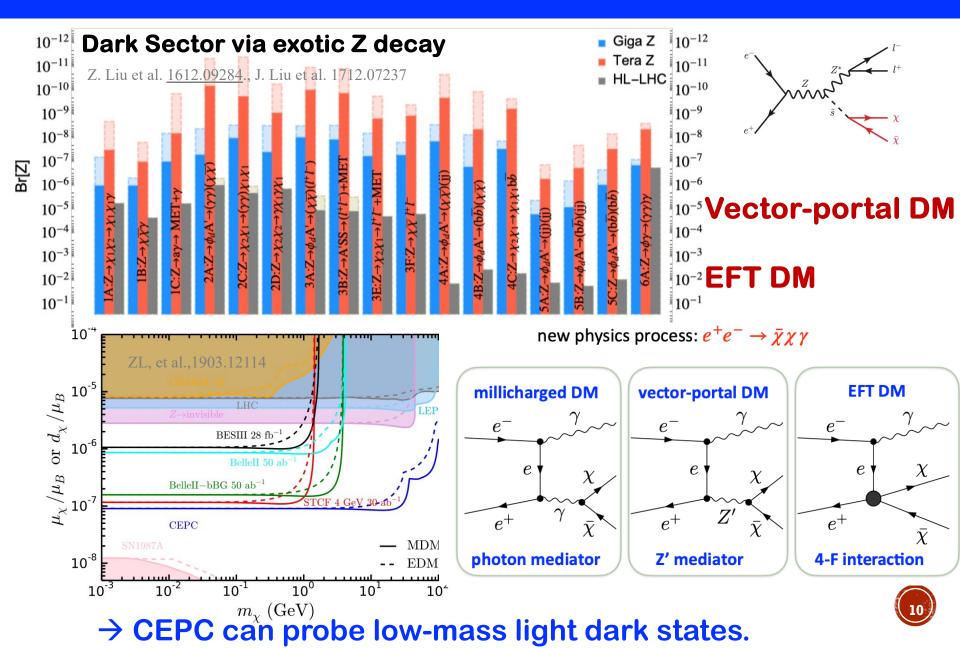

2. SUSY Searches at CEPC

SUSY: establishes a symmetry between fermions and bosons, solve many big questions: unification, DM, Hierarchy,
 Complementary with LHC: lower mass/soft energy region
 ✓ Mainly light EWKino and slepton for CEPC

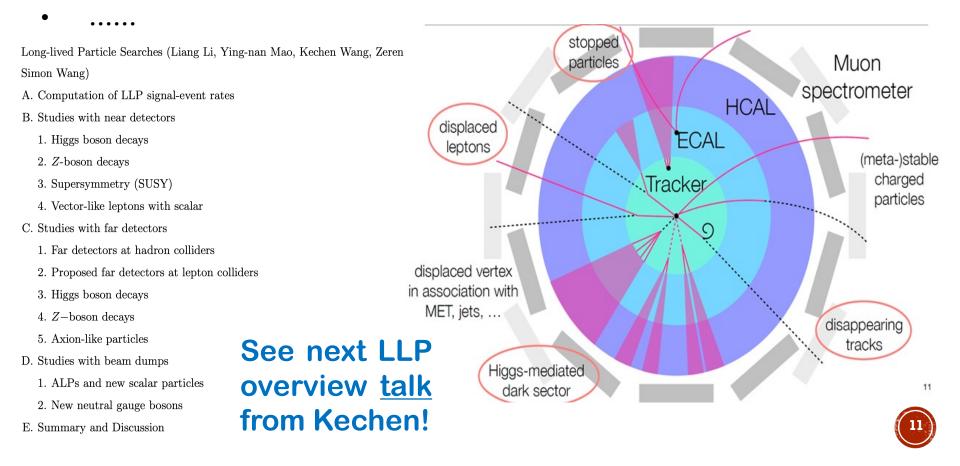


Lepton collider: discovery in all scenarios up to kinematic limit: \sqrt{sN}


2. SUSY Searches at CEPC


3. Dark Matter and Dark Sector

3. Dark Matter and Dark Sector


3. Dark Matter and Dark Sector

4. Long-lived particles (LLP)

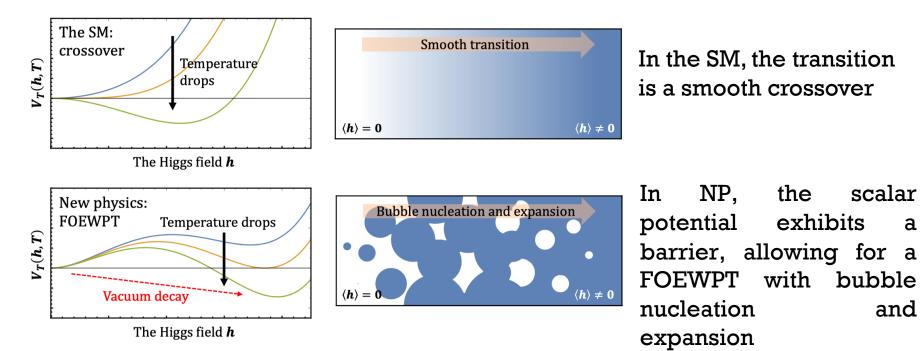
Long lifetimes result from a few simple physical mechanisms:

- Small couplings (ex. RPV SUSY)
- Limited phase space: small mass splitting (ex. compressed SUSY, ...)
- Heavy intermediate states

5. Flavor portal NP

- CEPC is also a flavor factory (b,c,tau) when running at Z pole, which has a unique sensitivity for some rare processes due to suppression in SM
 - The sensitivity of the flavor sector to new physics is underscored by several factors:
 - cLFV processes
 - Decays of b and c hadrons
 - Light BSM degrees of freedom from flavor transitions (cLFV or quark FCNC processes) with inv. BSM states or LLP

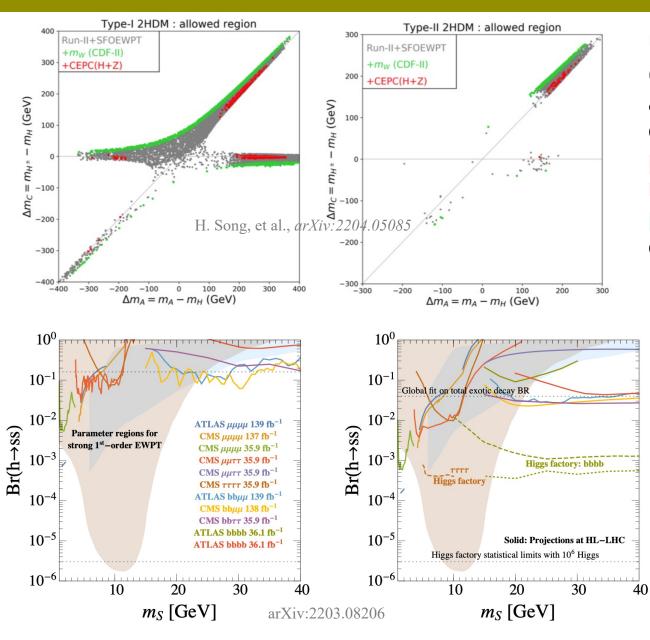
See flavor physics <u>talk</u> from Lingfeng!


	Measurement	Current Limit	CEPC [272]		
	${ m BR}(Z o au\mu)$	$< 6.5 \times 10^{-6}$	${\cal O}(10^{-9})$		
	${ m BR}(Z o au e)$	$< 5.0 \times 10^{-6}$	${\cal O}(10^{-9})$		
	${ m BR}(Z o \mu e)$	$<7.5\times10^{-7}$	$10^{-8} - 10^{-10}$		
	${ m BR}(au o \mu \mu \mu)$	$<2.1\times10^{-8}$	$\mathcal{O}(10^{-10})$		
	${ m BR}(au ightarrow eee)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		
	${ m BR}(au o e \mu \mu)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		
	${ m BR}(au o \mu ee)$	$< 1.8 \times 10^{-8}$	$\mathcal{O}(10^{-10})$		
	${ m BR}(au o \mu \gamma)$	$<4.4\times10^{-8}$	$\mathcal{O}(10^{-10})$		
	${ m BR}(au o e \gamma)$	$< 3.3 \times 10^{-8}$	${\cal O}(10^{-10})$		
	${ m BR}(B_s o \phi u ar{ u})$	$< 5.4 \times 10^{-3}$	$\lesssim 1\%$ (relative)		
	${\rm BR}(B^0\to K^{*0}\tau^+\tau^-)$	-	$\lesssim {\cal O}(10^{-6})$		
	$BR(B_s \to \phi \tau^+ \tau^-)$	-	$\lesssim {\cal O}(10^{-6})$		
	${\rm BR}(B^+\to K^+\tau^+\tau^-)$	$<2.25\times10^{-3}$	$\lesssim {\cal O}(10^{-6})$		
	${ m BR}(B_s \to \tau^+ \tau^-)$	$< 6.8 \times 10^{-3}$	$\lesssim {\cal O}(10^{-5})$		
	${ m BR}(B^0 o 2\pi^0)$	$\pm 16\%$ (relative)	$\pm 0.25\%$ (relative)		
	$C_{CP}(B^0 \to 2\pi^0)$	± 0.22 (relative)	± 0.01 (relative)		
	${ m BR}(B_c o au u)$	$\lesssim 30\%$	\pm 0.5% (relative)		
$BR(B_{c}$	$g \to J/\psi \tau \nu)/{ m BR}(B_c \to J/\psi \mu \nu)$	\pm 0.17 \pm 0.18	$\pm 2.5\%$ (relative)		
$BR(B_s$	$\rightarrow D_s^{(*)} \tau \nu) / \mathrm{BR}(B_s \rightarrow D_s^{(*)} \mu \nu)$	-	$\pm 0.2\%$ (relative)		
BR(/	$\Lambda_b \to \Lambda_c au u) / \mathrm{BR}(B_c \to \Lambda_c \mu u)$	± 0.076	$\pm 0.05\%$ (relative)		
	$BR(\tau \to \mu X_{inv.})$	$7 imes 10^{-4}$	$(3-5) \times 10^{-6}$		
]	$BR(B \to \mu X_{LLP}(\to \mu \mu))$	-	$\mathcal{O}(10^{-10})$ (optimal)		
Dualinainaura consitiuitias of DCM					

Preliminary sensitivities of BSM flavor physics probes at CEPC 2 > two orders of magnitude improv.

6. EWPT at CEPC

The nature of Electroweak Phase Transition deeply impacts the thermal history of the Universe, closely linked to puzzles of DM, matter-antimatter asymmetry


- Probing the nature of EWPT at colliders

- Higgs precision measurements
- Higgs exotic decay

6. EWPT at CEPC

Under current constraints, both Type-I and Type-II 2HDM can explain the SFOEWPT, Zpole, Higgs precision measurements and mW precision measurement of CDF-II at same time.

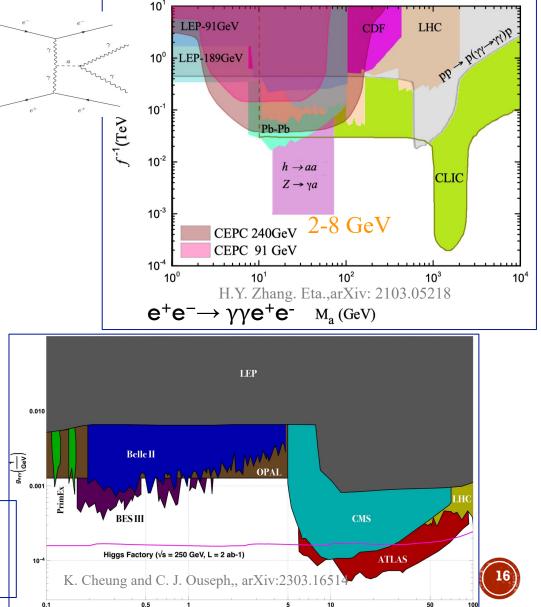
Higgs exotic decay $h \rightarrow ss \rightarrow XXYY$ as a probe for the FOEWPT:

CEPC has the potential to probe almost the entire FOEWPT parameter space for 4b and 4tau channels

7. Neutrino physics

BSM related neutrino physics from new messengers and interactions at EW scale:

- Heavy neutrino (@ND, FD)
- Active-sterile neutrino transition magnetic moments
- Non-standard neutrino interactions
- Possibility of connecting to leptogenesis (collider probes)
- Possibility of connecting to dark matter (sterile neutrino in the vMSM)

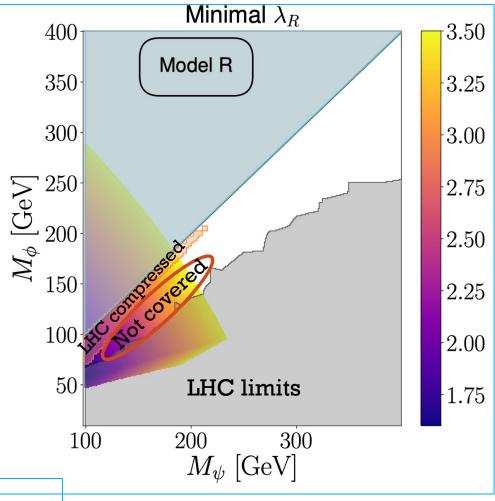


8. More exotics

High precision of Z, h widthoffers power test of exoticsprocessofLeptonnumber/flavor violation, Sterilestates, Axion-like particles ...

- Axion-like particles (solve "strong-CP" problem)
- Lepton form factors (μ /e g-2, μ /e dipole moments in SUSY, τ weak-electric dipole moments)
- Emergent Hadron Mass
- Exotic lepton mass models

Improve the sensitivity down to $2 \times 10^{-4} \, \text{GeV}^{-1}$ for Ma<6 GeV



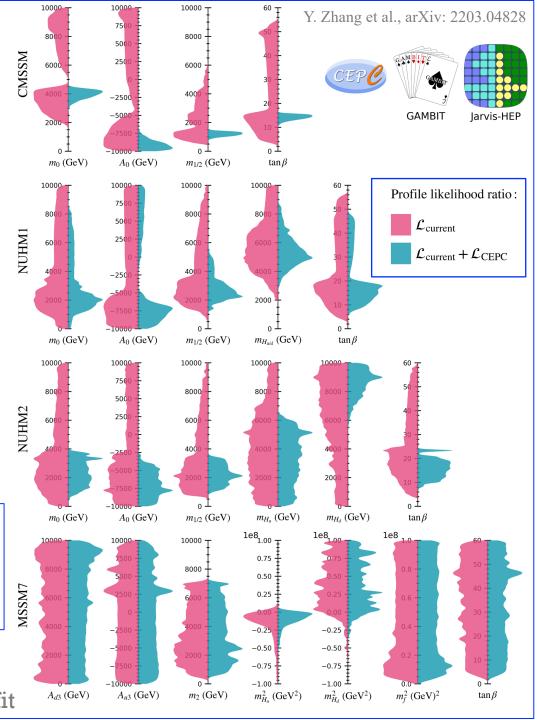
M_a(GeV)

8. More exotics

High precision of Z, h widthoffers power test of exoticsprocessofLeptonnumber/flavor violation, Sterilestates, Axion-like particles ...

- Axion-like particles (solve "strong-CP" problem)
- Lepton form factors (μ /e g-2, μ /e dipole moments in SUSY, τ weak-electric dipole moments)
- Emergent Hadron Mass
- Exotic lepton mass models
- Light EWKinos, smuon, stau coannihilation can explain mu g-2 excess
- Gaps from LHC, can cover by CEPC

A simple model with a new scalar and and a new fermion


9. Global fits

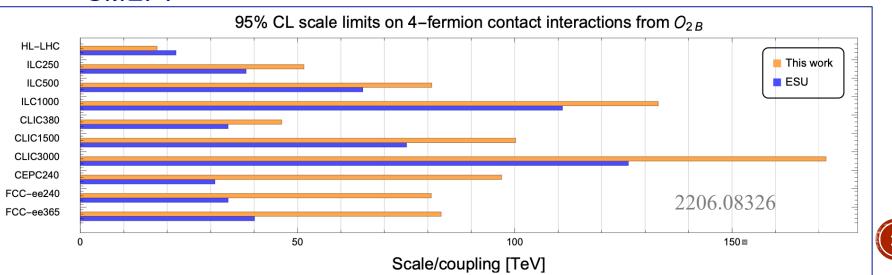
Global fits: an essential tool to obtaining a thorough understanding of a NP model, and the implications and predictions of the models for future searches and experiments.

- SUSY global fits
- 2HDM
- SMEFT

CEPC has the potential to greatly enhance our understanding of the parameter space and mass spectrum in the MSSM.

> One-dimensional profiled likelihood ratio for the global fit

9. Global fits


Global fits: an essential tool to obtaining a thorough understanding of a NP model, and the implications and predictions of the models for future searches and experiments.

- SUSY global fits
- 2HDM

• SMEFT

SMEFT global fit for 4-fermion and CPV operators at future colliders

- The sensitivity to NP from global fit is significantly enhanced thanks to the high energy/ luminosity/beam polarization of future lepton colliders

Preliminary CEPC BSM white paper

ABSTRACT (TO BE UPDATED)

The Circular Electron Positron Collider (CEPC) is a large-scale collider facility that can serve as a factory of the Higgs, Z, and W bosons and is upgradable to run at the $t\bar{t}$ threshold. This document describes the latest CEPC nominal operation scenario and particle yields and updates the corresponding physics potential. A new detector concept is also briefly described. This submission is for consideration by the Snowmass process.

CONTENTS

Contributors (to be updated)	
Abstract (to be updated)	4
I. Executive Summary (Liantao, Xuai, Manqi, Jia, Zhen, Zhao, Yu)	8
II. Introduction(Liantao, Xuai, Manqi,Jia, Zhen,Zhao, Yu)	10
III. Description of CEPC facility, nominal luminosity and Typical Detector	
Performance (Manqi)	14
A. Key Collider Features	14
B. Key Detector Features	15
IV. Exotic Higgs potential and Exotic Higgs/Z/top decays (Yaquan, Zhao)	24
A. Higgs exotic decays in supersymmetry	26
B. Higgs/Z exotic decays in dark sector	27
C. Higgs exotic invisible decays	31
D. Higgs exotic decays via Long Lived Particles	32
E. Top quark exotic decays	36
V. Supersymmetry (Tianjun, Lei, Xuai, Da)	36
A. Light electroweakino searches	38
B. Light slepton searches	39
C. Input from the European Strategy	42

VI. Dark Matter and Dark Sector (Jia, Xiaoping, Yongchao))		
A. Lepton portal DM		
B. Interplay of dark particles with neutrinos		
C. Dark particles from exotic ${\cal Z}$ decays		
D. DM with millicharge & the effective theory of DM		
E. Dark particles with electromagnetic form factors		
F. Asymmetric DM		
G. Long-lived VLL		
VII. Long-lived Particle Searches (Liang Li, Ying-nan Mao, Kechen Wang, Zeren		
Simon Wang)		
Simon Wang) A. Computation of LLP signal-event rates		
5,		
A. Computation of LLP signal-event rates		
A. Computation of LLP signal-event ratesB. Studies with near detectors		
A. Computation of LLP signal-event ratesB. Studies with near detectors1. Higgs boson decays		
 A. Computation of LLP signal-event rates B. Studies with near detectors 1. Higgs boson decays 2. Z-boson decays 		

1. Far detectors at hadron colliders 2. Proposed far detectors at lepton colliders

C. Light BSM degrees of freedom from flavor transitions

3. Higgs boson decays

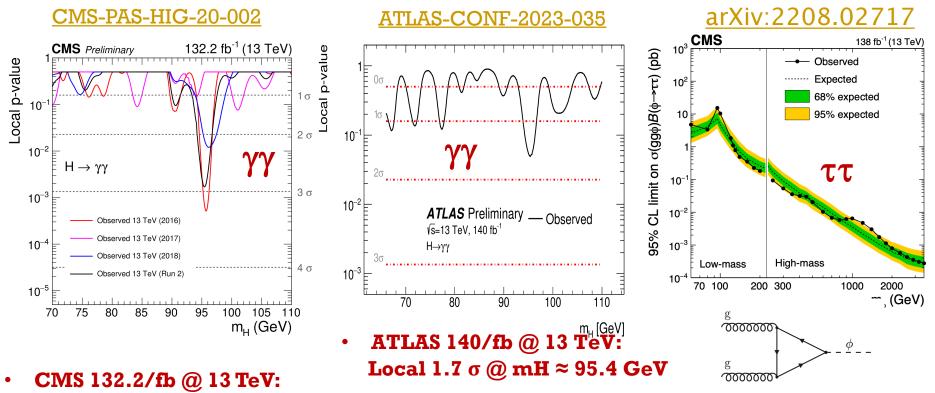
4. Z-boson decays 5. Axion-like particles D. Studies with beam dumps 1. ALPs and new scalar particles 2. New neutral gauge bosons E. Summary and Discussion VIII. Flavor Portal NP(Lingfeng, Xinqiang)

> A. cLFV processes B. Decays of b and c hadrons

44	IX.	Electroweak phase transition and gravitational waves (Ke-Pan Xie, Sai Wang, Fa		
46		Peng Huang, Bruce)	100	
47		A. Probing the nature of electroweak phase transition at the colliders	101	
48		B. Higgs precision measurements	103	
49		C. Higgs exotic decay	106	
51	X.	Neutrino Physics (Bhupal, Wei, Yongchao)	109	
52		A. Possibility of connecting to leptogenesis (collider probes) and dark matter		
54		(sterile neutrino in the ν MSM)	109	
		B. Heavy neutrino decays	110	
57		C. Active-sterile neutrino transition magnetic moments	112	
58		D. Non-standard neutrino interactions	113	
62		E. Heavy neutral leptons at the near detector	115	
63		F. Heavy neutral leptons at far detectors	119	
73		G. Heavy neutral leptons at beam dump experiments	121	
75				
76	XI.	More Exotics (Yu, Zuowei)	124	
77		A. Axion-like particles	124	
78		B. Lepton form factors	127	
80		1. General remarks on $\mu/e~g-2$	128	
82		2. μ/e dipole moments in SUSY	130	
83		3. τ weak-electric dipole moments	131	
84		C. Emergent Hadron Mass	132	
86		D. Exotic lepton mass models	134	
87	VII	Global Fits (Jiayin, Yang, Yong Du)	136	
89	лп.		130	
91		A. SMEFT global fits		
		B. 2HDM global fits (Tao Han, Shufang Su, Wei Su, Yongcheng Wu)	139	
94		C. SUSY global fits	142	
96 97	XIII.	Conclusion (Liantao, Xuai, Manqi,Jia, Zhen, Zhao, Yu)	145	
98		Acknowledgements	146	

Summary and Outlook

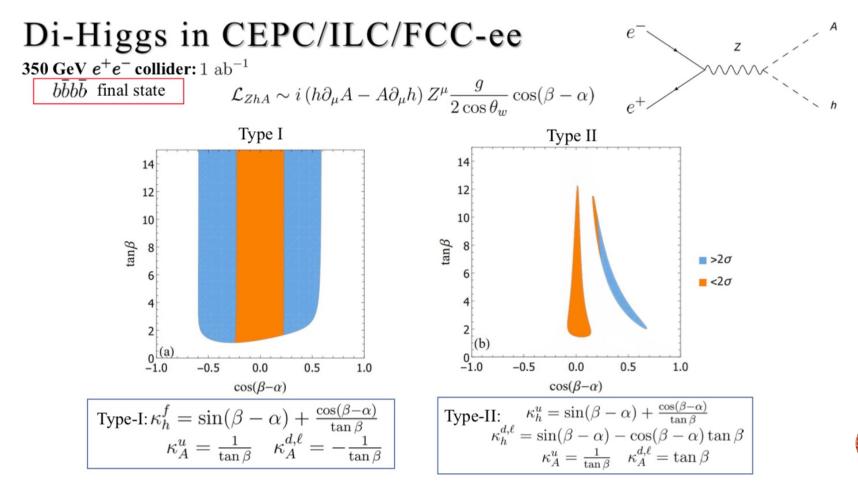
- CEPC has good discovery potential for NP, which is good complementary to LHC
- BSM prospects study at CEPC is going on well, many of the analyses are already public: partial of BSM prospects at CEPC are included in CEPC snowmass white paper in 2023: <u>arXiv:2205.08553</u>
- CEPC BSM white paper is preparing and to be ready for review by this summer
- Please let us know if you would like to help to polish and review the BSM white paper !


Thanks for your attention!

Light Higgs

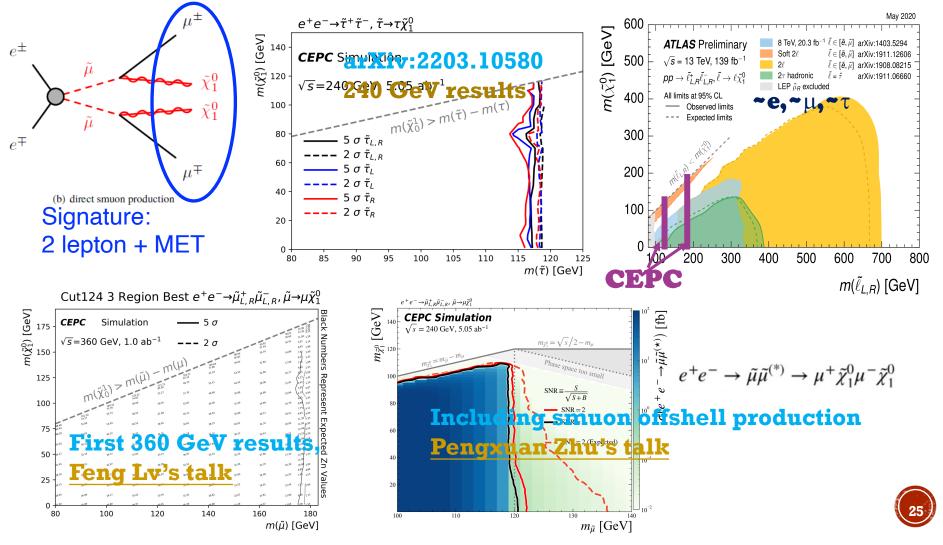
Light Higgs are motivated by 2HDM and Axion-like particle models

Local (global) 2.9 (1.3) σ @ m \approx 95.4 GeV

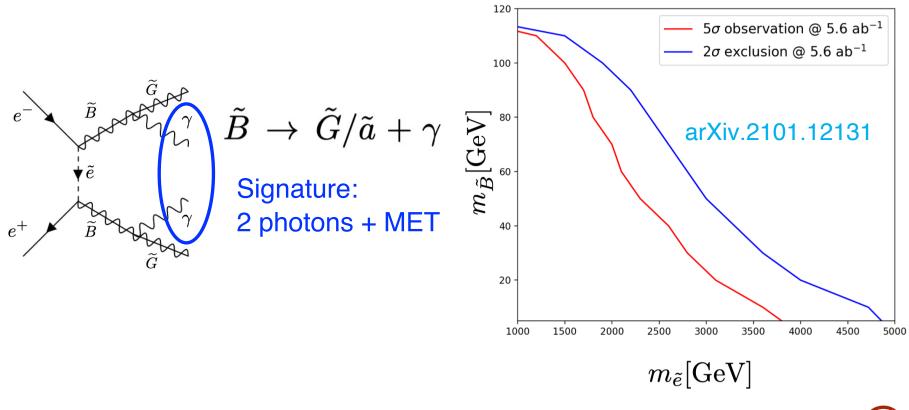

Previous CMS result 20+36/fb@ 8+13 TeV:
 Local (global) 2.8 (1.3) σ @ m ≈ 95.3 GeV

CMS 132.2/fb @ 13 TeV: $gg\phi (\phi \rightarrow \tau\tau)$ Local (global) 3.1 (2.7) σ @ m \approx 100 GeV Local (global) 2.8 (2.2) σ @ m \approx 1200 GeV

The excess did not grow with luminosity, but remains intriguing, a which can be searched at CEPC very well if exists.

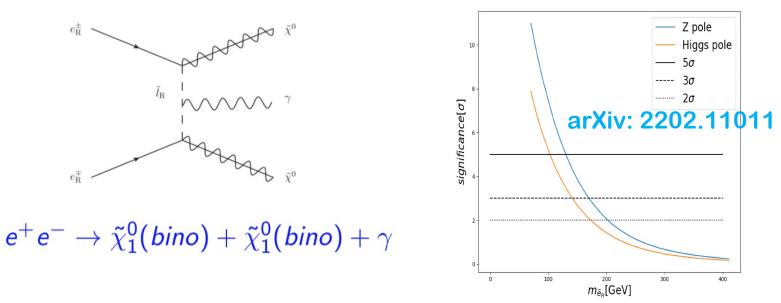

Identify CP-odd component in Higgs

- Use di—higgs production to identify CP-odd component in Higgs boson, Changlong Xu's talk
- Future electron-positron colliders are more powerful for exploring the ZHH Di-Higgs production


Slepton search

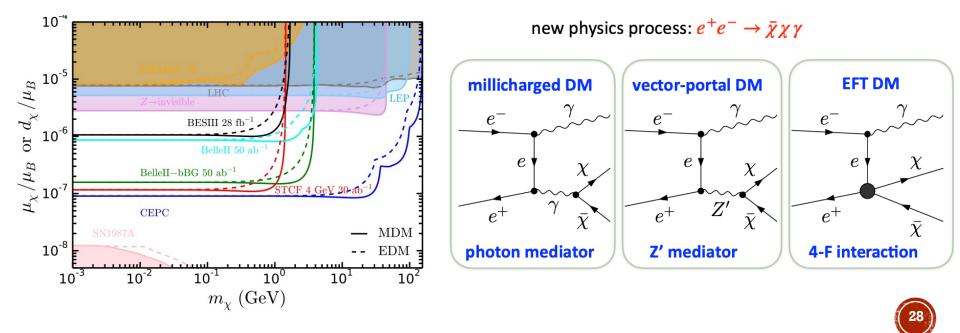
Prospects for slepton pair production at CEPC, Jia-Rong Yuan, Hua-Jie Cheng, Xu-Ai Zhuang, arXiv: 2203.10580

Bino NLSP at CEPC


Probing bino NLSP at lepton colliders with Gravitino DM, Junmou Chen, Chengcheng Han, Jin Min Yang, Mengchao Zhang, arXiv:2101.12131.

Heavy selectron search

- Probing relatively heavier right-handed selectron in the GmSUGRA, by Waqas Ahmed, Imtiaz Khan, Tianjun Li, Shabbar Raza and Wenxing Zhang, arXiv: 2202.11011
- There two types of light neutralinos that achieve the correct relic density by Z-resonance and h-resonance.


Higgs-pole $\rightarrow m_{\tilde{\chi}_1^0} \approx \frac{1}{2} m_h$ and Z-pole $\rightarrow m_{\tilde{\chi}_1^0} \approx \frac{1}{2} m_Z$.

DM search at CEPC

- Probing DM particles at CEPC (Millicharged DM, Vector portal DM, EFT DM): ZL, Y.-H. Xu, Y. Zhang ,1903.12114
- Mono-γ Production of a Vector Dark Matter at CEPC, K Ma, 2205.05560
- Exposing Dark Sector-photon interactions *at CEPC*, Y. Zhang,
 M. Song and L. Chen, arXiv: 2208.08142, Yu Zhang's talk
- \rightarrow CEPC can probe low-mass light dark states.

DM search at CEPC

- Searching for lepton portal dark matter with colliders and interplay with the gravitational wave (GW) astronomy, Jia Liu, Xiao-Ping Wang, KePan Xie, 2104.06421, JHEP 06 (2021) 149
- The phase transition GWs can also be a probe of the model.

$$e^+e^- \to S^{\pm(*)}S^{\mp} \to \ell^+\chi\ell'^-\chi \quad h/Z \to S^{\pm(*)}S^{\mp(*)} \to \ell^+\chi\ell'^-\chi \text{ and } h \to \chi\chi_{\pm}$$

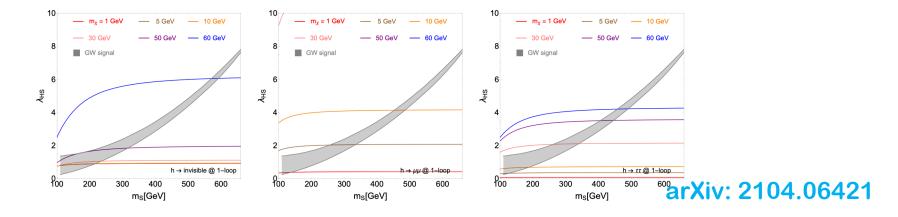
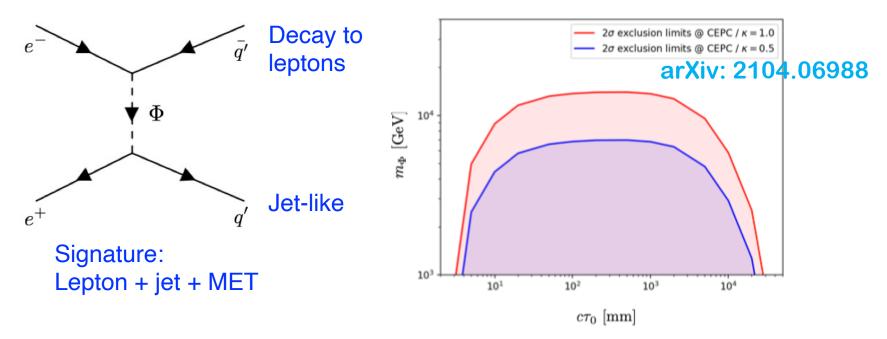
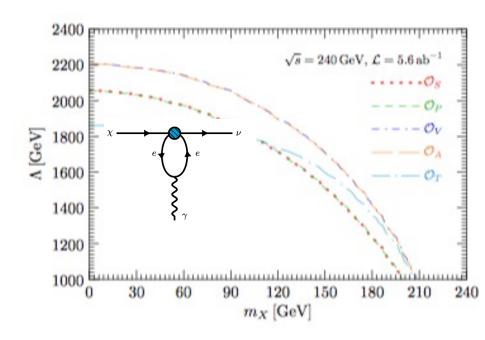



FIG. 10. Figure from Ref. [168], the interplay between GW detection and future e^+e^- collider searches. The gray shaded region is the LISA detectable parameter space. From left to right, the sensitivities for λ_{HS} are shown from future CEPC precision measurements, in which the region above a given m_{χ} (corresponding to a colored line) can be probed.

DM search at CEPC

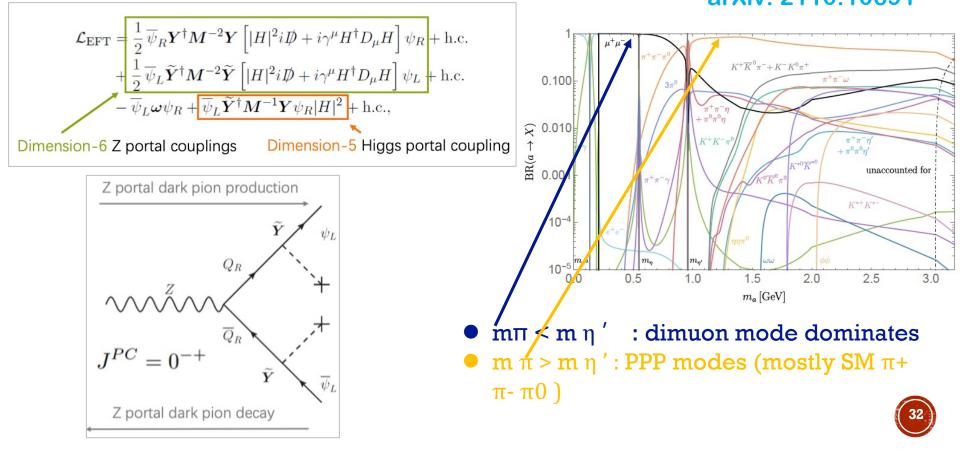
- Searching for asymmetric Dark Matter (ADM) at CEPC, Mengchao Zhang, 2104.06988, PRD 104, 055008 (2021)
- It is possible to generate dark quark pair through a t-channel process, dark quark q' will be a jet-like object in detector.

The mass of mediator can be excluded up to O(10) TeV, better than LHC

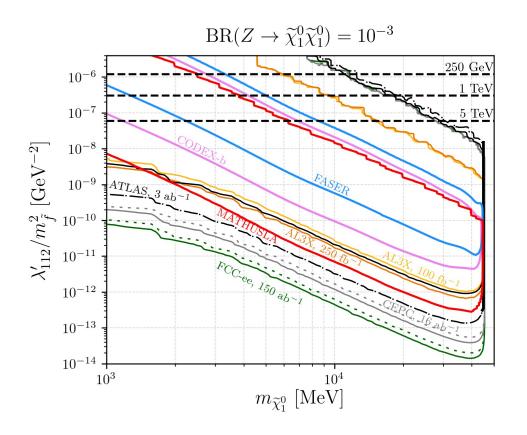


Dark Matter/Dark Sector searches

- Exposing Dark Sector-photon interactions at CEPC, Y. Zhang, M. Song and L. Chen, arXiv: 2208.08142, <u>Yu Zhang's talk</u>
- → CEPC can probe low-mass light dark states with electromagnetic form factors via mass-dimension 5 operators.

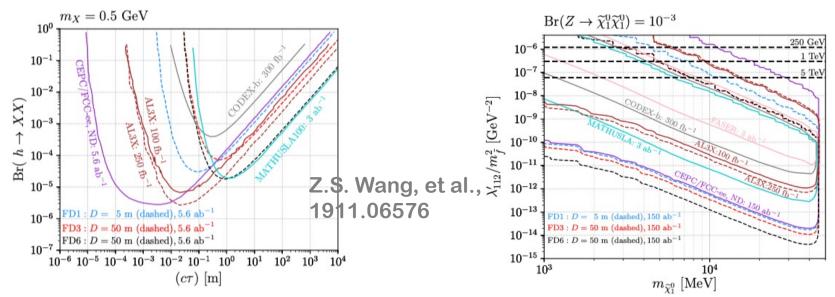


- Exposing Dark Fermion in light of Electron Target Absorption at CEPC, Shao-Feng Ge and Kai Ma, <u>Kai Ma's</u> <u>talk</u>
- → All the effective four-fermion couplings can be constrained to be well above 1TeV scale


LL Dark Hadrons

- A theory of Dark Pions, Hsin-Chia Cheng, Lingfeng Li, Ennio Salvioni, 2110.10691, JHEP 01 (2022) 122, see Lingfeng's <u>talk</u>
- The dark quarks couple to the SM via irrelevant Z- and Higgs-portal operators. The dark pions, behave as either composite axion-like particles (ALPs) mixing with Z or h
 arXiv: 2110.10691

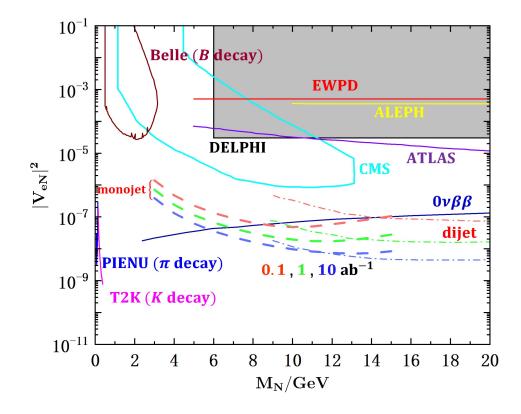
LLP at near Detector (ND)

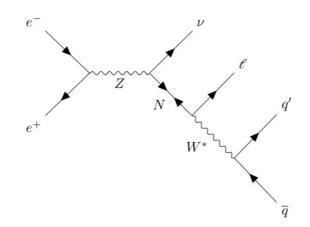

- Long-lived light neutralinos at future Z-factories (RPV SUSY), Zeren Simon Wang, Kechen Wang, 1904.10661, PRD 101, 115018 (2020)
- The model parameter λ'₁₁₂/m²_f can be discovered down to as low as ~1.5×10⁻¹⁴ (3.9×10⁻¹⁴) GeV⁻² at the FCC-ee (CEPC)

arXiv: 1904.10661

LLP at Far Detector (FD)

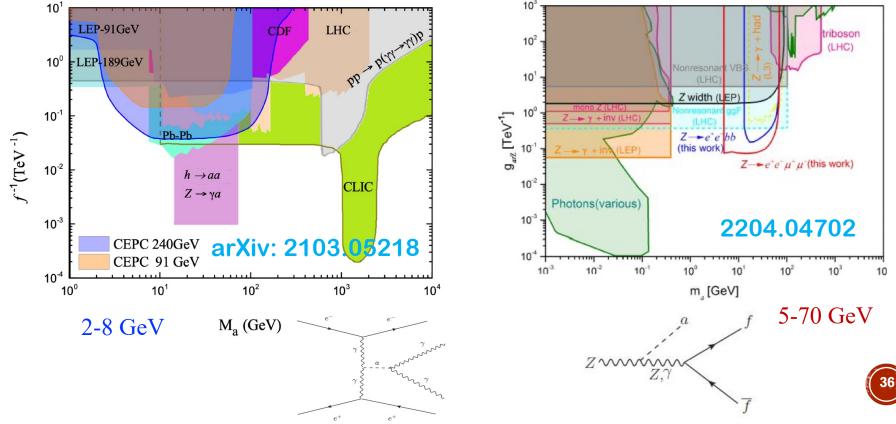
Light Scalars from Exotic Higgs Decays


Light Neutralinos from Z Decays


→ FD can extend and complement the sensitivity to the LLPs compared with Near Detector

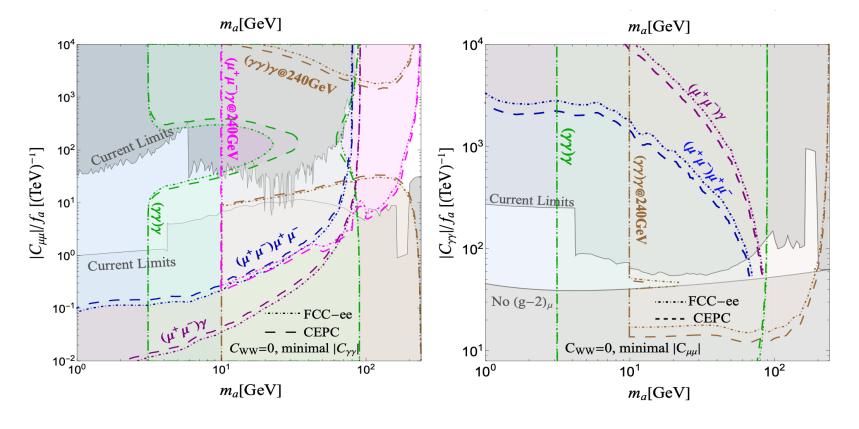
Heavy neutrino search

- Monojet Search for Heavy Neutrinos at Future Z-Factories, Y.F. Shen, J.N. Ding, Q. Qin, arXiv: 2201.05831, Yin-Fa Shen' talk
- → The monojet method will be able to fill the gap and has better sensitivity around the mass range between 5-15 GeV.

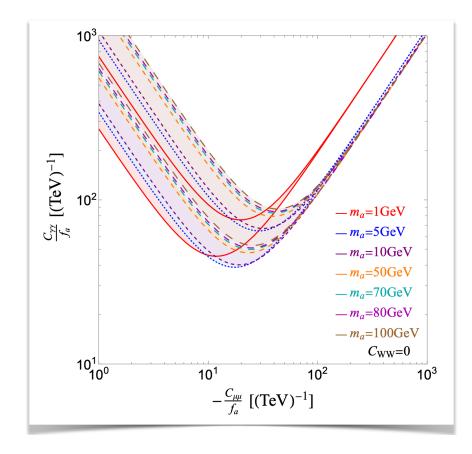

Axion-like particles (ALP)

Searching for ALP at future electron-positron colliders, H. Y. Zhang, C.X. Yue, Y.C. Guo, and S. Yang, 2103.05218, PRD104 (2021) 096008

 \rightarrow CEPC is more sensitive to the ALPs couplings $g_{a\gamma\gamma}$ with mass 2-8 GeV than LHC and CLIC.


• Searching for ALP via decay $Z \rightarrow aff^{-}$ at future Z factories, 2204.04702

Axion-like particle solution to muon g-2 and its test at Z-factory, Jia Liu's talk


Axion-like particles (ALP)

- The ALP explanation to muon g-2 and its test at CEPC, J. Liu, X.L. Ma, L.T. Wang, X.P. Wang, arXiv:2210.09335, Xiao-Ping Wang's talk
- \rightarrow ALP can provide a g-2 solution with couplings $C\mu\mu$ and $C\gamma\gamma$;
- → Tera-Z and Higgs factories, can completely cover the relevant parameter space through searches with final states $(\gamma\gamma)\gamma$, $(\mu+\mu-)\gamma$ and $(\mu+\mu-)\mu+\mu-$.

Axion-like particles (ALP)

- The ALP explanation to muon g-2 and its test at CEPC, J. Liu, X.L. Ma, L.T. Wang, X.P. Wang, arXiv:2210.09335, Xiao-Ping Wang's <u>talk</u>
- ALP can provide a solution with couplings $C\mu\mu$ and $C\gamma\gamma$;

- In g-2 solution region, mostly decay to $a \rightarrow \mu^+ \mu^-$
- The inclusion of Z diagram makes some difference for large m_a
- Exotic Z decay should happen

