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New Physics Beyond SM- LLPs

2

Long-lived particles (LLPs) are important ways to new physics 
• Many particles in BSM models have a relatively long lifetime: weak coupling 

to SM particles, maybe new scalars, dark photons, ALP, SUSY….

LLP topology, a strong signature for detection:

• Displaced vertex with a long distance from the main vertex

• Different performance for neutral particles: a burst of energy appearing 

of nowhere and far away from the collision point

Potential on Lepton Collider
• The advantage of the lepton collider: clean environment

• Making use of deep learning techniques: Image recognition and pattern 

identification



2-jet 4-jet 

LLPs at CEPC
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We consider two scenarios for LLP decay at CEPC: 2-jet final 
state and 4-jet final state

𝑒!𝑒" → 𝑍𝐻 → 𝑣𝑣̅ + 𝑋 + 𝑋 → 𝑣𝑣̅𝑞*𝑞𝑞*𝑞

• We use the full simulation sample using CEPC official software 

(v4) to an integrated luminosity of 20 ab−1

• The LLP signal sample is generated by Madgraph5 and 

showered by Pythia8

• The decay vertex of LLPs: 𝟎 ≤ 𝒓𝐝𝐞𝐜𝐚𝐲 ≤ 𝟔 [𝐦]



General Analysis Strategy
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• In this study, we use advanced neural networks trained 
with low-level detector information:

• No need for vertex reconstruction and object 

reconstruction

• The input information from the detectors is all calibrated 

and considering detector resolution

• Universal treatment for all decay channels

• LLPs are classified into 3 categories based on 

the number of detectable LLPs

• Background samples: eeqq (2 fermions) and W/Z 

process (four fermions) 
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Image Conversion: CNN
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Converting the detector information to 2D image
• The size is 200×200 according to R and phi in polar angle 
• 2 channels: time and energy

• Hits energy: bigger circle represents hits with larger energy
• Hits time: darker circles represent hits with smaller time differences
• Include both calorimeter and tracker hits

𝑒!𝑒" → 𝑍𝐻 → 𝑣𝑣̅ + 𝑋 + 𝑋 → 𝑣𝑣̅𝑞*𝑞𝑞*𝑞



CNN: Network Setup
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Using ResNet18 model with the cross - entropy loss



Graph Neutral Networks (GNN)
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§ Features of nodes: calorimeter-type and tracker-type.

§ Features of edges: interaction between neighbor nodes.

We change the representation of the information in the calorimeter and tracker to point-cloud dataset

• A clustering process is introduced to reduce graph complexity and extract the main information

• Nodes of the same detector type are interconnected comprehensively



Heterogeneous GNN
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We use a GNN-based heterogeneous architecture for the graph inputs



0.001 0.01 0.1 1 10 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

CNN
50 GeV
10 GeV
1 GeV

GNN
50 GeV
10 GeV
1 GeV

Lifetime [ns]

CEPC Simulation

ML- Bases Analysis Result
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• Both CNN and GNN achieve high signal efficiencies with background-free

• The performance is consistent across different LLP mass and lifetime considerations. 

• Systematics uncertainties of 1.7% / 2.3%: 

• Lumi uncertainties and neutral network variable uncertainties

• Pile-up and cosmic rays is negligible
𝑎𝑏−1



LLP Sensitivity
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• The best expected limit of BR(H → XX) achieves 10e-6. 
• Outperforming the current limit from ATLAS and CMS by two orders of 

magnitude. 
• An order of magnitude better than the ILC’s when the lifetime of LLP is over 
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LLP Sensitivity
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• We also provide the 2D likelihood for 95% Confidence Level upper limit on BR(H → XX) with 2 jets and 4 
jets final state

• Higher mass and shorter lifetime scenarios have better sensitivities
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External Detector Design

12

Exploring the potential of enhancing the discovery sensitivity by placing an external detector far away from 

the baseline detector structure 

• Multi layers using scintillators, extending from 6 to 106 meters

• The gaining factor is used to evaluate the performance: better improvements for long lifetime scenario
External detector length

Expected LLP decay length



Summary and Outlook
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LLPs Search with Deep Learning at Lepton Collider 

• Clean environment with distinct detector signature 
• Best exclusion limit on BR(H→LLPs) @ 20 ab-1: 1.2e-6

• 1D and 2D sensitivity results 

• Significant enhancement from deep learning techniques 
• Simplified analysis strategy compared to the traditional method 

• Low-level detector information without full reconstruction 

• Signal efficiency as high as 99% 

• Short lifetime: biggest improvement 

• The external detector might help with long lifetime LLPs search



Backups
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Systematics Uncertainties
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LLP Limits
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Cut Bases Analysis Results
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Network Training Results
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