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ML algorithms for dN/dx reconstruction

Simulated Supervised model PID
samples arXiv: 2402.16493 performances

Test beam Semi-supervised
data domain adaptation
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Motivation: Particle identification

= PID is essential for CEPC, especially for flavor physics

® Suppressing combinatorics

= Distinguishing between same topology final-states

® Adding valuable additional information for flavor tagging of jets
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Drift chamber with PID capability

The CEPC 4t concept

Advantage: Cost efficient, high density

Scint Glass

TV | chatienges: Light yeid, ransparency E— — A drift chamber with cluster counting

radiation hardness, massive production Advantage: the HCAL absorbers act as part i

of the magnet retum yoke, (dN/dx) is one of the gaseous detector

Chall - thi h not to affect the jet .
\ ~ resolltion (e.g. BMR); stabilty. options

— Key parameters:

Advantage: better %y reconstruction .

Challenges: minimum number of readout * FU” |ength 5800 mm

channels; compatible with PFA calorimeter; ° Barre| Coverage- |Cose| < O 85

maintain good jet resolution. . ) '

* Radius: 600 — 1800 mm
A Drift chamber * Support: 8x8 carbon fiber frame

that is optimized for PID
* Endcap: 20 mm Al plate
Advantage: Work at high luminosity Z runs

Challenges: sufficient PID power; thin enough * GaS mIXture: 90/10 He/IC4H10

not to affect the moment resolution. Need a
Muon+Yoke Si Tracker Si Vertex supplementary ToF detector

» See Mingyi’s talk for more details on
the drift chamber design 4



dE/dx: Measure the total energy loss
Landau distributed
Large fluctuation from many sources

dN/dx: Measure the number of primary ionizations (breakthrough PID tech.)

Poisson distributed

Small fluctuation; Potentially improve the resolution by a factor of 2

K/m separation power
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Challenges of dN/dx measurement

Orange lines: Primary electrons (MC truth)

Green lines: Secondary electrons (MC truth)
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Single pulse risetime ~ns, require fast electronics
* Bandwidth > 1 GHz
* Gain > 10
* Sampling rate > 1.5 GS/s
* Bit resolution > 12 bit

Signals are superimposed with noises and are
heavily piled-up in some regions, require
sophisticated reconstruction algorithm




dN/dx reconstruction

Orange lines: Primary electrons (MC truth)
Green lines: Secondary electrons (MC truth)
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What is the dN/dx reconstruction?

As implied by the name “cluster counting”, the dN/dx
reconstruction is to determine the number of primary
electrons in the waveform



dN/dx reconstruction (ll)
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2-step algorithm

Peak finding:

Detect peaks from both primary and
secondary electrons

Clusterization:

Remove secondary electrons from the
detected peaks in step 1



Software package and data samples

= Simulation package

m Garfield++-based simulation + data-driven digitization

= Data samples
® Simulated samples
m 0-20 GeV/c pions and kaons
® Experimental samples
m 180 GeV/c muons from CERN/H8 beam

Simulation package

Experimental measurement |
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Supervised model for simulated samples

Peak finding Clusterization
® O L
e I e 2N
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Outputs

Long Short-Term Memory (LSTM)

* A specified recurrent neural network (RNN)
that deals with the vanishing gradient problem

* Can handle long sequences efficiently

Dynamic Graph CNN (DGCNN)

* A specified graph neural network (GNN) that incorporates
local information and stacked to learn global properties,
which is very suited for clusterization

DGCNN-based clusterization
* Peak timing as the node feature. Edges are initially
connected by timing similarity.

* Binary classification of primary and secondary electrons
10

LSTM-based peak finding
*  Waveform as sliding windows
* Binary classification of signals and noises



Peak finding results

More efficient

——— pileup recovery
Primary electrons (MC truth)
H —— Secondary electrons (MC truth)
e Detected electrons

Table 2. The purity and efficiency comparison between LSTM-based
ML algorithm and traditional D2 algorithm for peak-finding.

Purity Efficiency
LSTM algorithm 0.8986 0.8820
D2 algorithm 0.8986 0.6827

Amplitude (a.u.)
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33 JA’I‘HILL Trad = The LSTM-based model is more powerful
N —— . than the traditional derivative-based
s W algorithm, especially for the pileup recovery
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Traditional peak-finding: second derivative



Clusterization results

More accurate
secondary e-

r‘emoval Primary electrons (MC truth)
H —— Secondary electrons (MC truth) ROC Curve
e Detected primary electrons 104 — mL
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Traditional clusterization: adjacent-peak merge



PID performances with supervised models

dN/dx resolution
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much better than typical dE/dx ~5°/33



PID performances with supervised models (ll)

K/mt separation power vs. momentum K/mt separation power @ 20 GeV/c
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Domain adaptation for test beam data

= Challenges for real data
® Imperfect simulation
= Incomplete labels in real data

= Solution: Domain adaptation

= Transfer knowledge between
simulation and real data

Classification on transported samples

Dataset Optimal transport
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Semi-supervised domain adaptation 15



Model validation by pseudo data
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Numeric experiment with pseudo data in 2 domains

(simulation domain & data domain)

Model AUC | pAUC (FPR<0.1)

Ideal 0.926 0.812

Baseline 0.878 0.749 )

Unsupervised DA 0.895 0.769

Semi-supervised DA 0.912 0.793 )
" Note:

m |deal = Supervised model in data domain

m  Baseline = Supervised model in sim. domain

m  Unsupervised DA = Baseline + OT

m  Semi-supervised DA = Baseline + OT + semi-

supervised setup
® The OT and the semi-supervised loss improve the

results, and the performance of the semi-supervised
DA model is very close to the ideal model 16

Improve

Improve



Peak finding for test beam data

Single-waveform results between I
derivative alg. and DL alg.

Multi-waveform
results for samples
in different angles
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The algorithm is stable w.r.t. track length
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Two machine learning algorithms are developed for dN/dx reconstruction. In principle
the method can be applied to similar feature extraction tasks in signal processing.

The supervised model has 10% improvement on K/pi separation w.r.t. traditional
algorithm. The situation could be similar for the semi-supervised domain adaptation
model.

When studied with the full-simulation samples using a supervised model, the CEPC
drift chamber achieves < 3% K/pi resolution and > 3.2¢ K/pi separation.

When studied with the test beam samples, the semi-supervised domain adaptation
model successfully transfer information from simulation and achieve stable
performances.

18



Backup



Traditional peak finding

pileup signals

Lol | -
Primary electrons (MC truth) -
2.0 | I —— Secondary electrons (MC truth) -
I \ _--
-
I _--
15 1 -
-1
| -
3 I -
° -
4 1.0 1 - =
2 1 T
i | r
z I 1 <
S
1 =
0.5 1 g
1 <
I
1
00 U I !
== e
100 400 T o~
_____
-
/ - —0.4
/ ==
/
3.0
Primary electrons (MC truth)
—— Secondary electrons (MC truth)
2.5 4 — First derivative
— Second derivative
[ ]
2.0 4
L .
3 154
3 [ J
=]
Only 1 out of 3
E‘ 104
-] . . °
signals is detected
0.5 1
[ J
0.0
—| °
-0.5 T T T T T
120 125 130 135 140 145 150

Index

Primary electrons (MC truth)
— Secondary electrons (MC truth)
0.8 —— First derivative
— Second derivative

0.6 -

0.4

. Some noises can
- ™1 also pass the

7 threshold

—~

T T T T
300 320 340 360 380 400
Index

Derivative-based peak finding

Take first and secondary derivatives
Require threshold passing

Challenges

Noises can pollute the signal
Signals are highly piled up
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Amplitude (a.u.)
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Traditional clusterization
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* Timing-based clusterization
* Merge adjacent peaks

* Challenges
* Electrons from different clusters can overlap
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Additional plots for domain adaptation
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Figure 1: An example of simulated waveform. The blue histogram is the wave-
form. The red solid circles are the signal peaks selected by the CWT algorithm.
The blue solid triangles are the noise peaks selected by requiring the 3 RMS
requirement. The orange lines indicate the electron signal times from MC truth

information.
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Figure 4: Waveform examples from the source sample (a) and the target sample
(b). The source waveforms are generated with a noise level of 10% and a pulse
risetime of 2 ns, while the target waveforms with a noise level of 20% and a

pulse risetime of 4 ns.
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