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ML algorithms for dN/dx reconstruction
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Without PID

𝐵0 → 𝜋+𝜋−

𝐵0 → 𝐾+𝜋− 𝐵𝑠
0 → 𝐾+𝐾−

Motivation: Particle identification
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◼ PID is essential for CEPC, especially for flavor physics

◼ Suppressing combinatorics

◼ Distinguishing between same topology final-states

◼ Adding valuable additional information for flavor tagging of jets

◼ …

Benchmark channel: 

𝐁(𝐬)
𝟎 → 𝐡+𝐡′

−



Drift chamber with PID capability
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A drift chamber with cluster counting 
(dN/dx) is one of the gaseous detector 
options

Key parameters:
• Full length: 5800 mm
• Barrel coverage: |cosθ| < 0.85
• Radius: 600 – 1800 mm
• Support: 8x8 carbon fiber frame
• Endcap: 20 mm Al plate
• Gas mixture: 90/10 He/iC4H10

The CEPC 4th concept

➢ See Mingyi’s talk for more details on 
the drift chamber design



Cluster counting in drift chamber (dN/dx)

◼dE/dx: Measure the total energy loss
◼ Landau distributed

◼ Large fluctuation from many sources

◼dN/dx: Measure the number of primary ionizations (breakthrough PID tech.)
◼ Poisson distributed

◼ Small fluctuation; Potentially improve the resolution by a factor of 2
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Challenges of dN/dx measurement
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• Single pulse risetime ~ns, require fast electronics
• Bandwidth > 1 GHz
• Gain > 10
• Sampling rate > 1.5 GS/s
• Bit resolution > 12 bit

• Signals are superimposed with noises and are 
heavily piled-up in some regions, require 
sophisticated reconstruction algorithm

~ns risetime

noise

pileup

Orange lines: Primary electrons (MC truth)
Green lines: Secondary electrons (MC truth)



dN/dx reconstruction
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What is the dN/dx reconstruction?

• As implied by the name “cluster counting”, the dN/dx 
reconstruction is to determine the number of primary
electrons in the waveform

Orange lines: Primary electrons (MC truth)
Green lines: Secondary electrons (MC truth)



dN/dx reconstruction (II)
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2-step algorithm

• Peak finding:
• Detect peaks from both primary and 

secondary electrons

• Clusterization:
• Remove secondary electrons from the 

detected peaks in step 1

Step 1

Step 2



Software package and data samples

◼Simulation package
◼ Garfield++-based simulation + data-driven digitization

◼Data samples
◼ Simulated samples

◼ 0-20 GeV/c pions and kaons

◼ Experimental samples
◼ 180 GeV/c muons from CERN/H8 beam
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Simulation Test beam

Tuned MC is comparable to dataSimulation package

Test beam at CERN

From INFN group leaded by Franco Grancagnolo 
and Nicola De Filippis



Supervised model for simulated samples
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Long Short-Term Memory (LSTM)
• A specified recurrent neural network (RNN) 

that deals with the vanishing gradient problem
• Can handle long sequences efficiently

LSTM-based peak finding
• Waveform as sliding windows
• Binary classification of signals and noises

Dynamic Graph CNN (DGCNN)
• A specified graph neural network (GNN) that incorporates 

local information and stacked to learn global properties, 
which is very suited for clusterization

DGCNN-based clusterization
• Peak timing as the node feature. Edges are initially 

connected by timing similarity.
• Binary classification of primary and secondary electrons

Peak finding Clusterization

LSTM

EdgeConv



Peak finding results
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◼ The LSTM-based model is more powerful 
than the traditional derivative-based 
algorithm, especially for the pileup recovery

More efficient 
pileup recovery

Trad.

ML

Traditional peak-finding: second derivative



Clusterization results
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◼ The DGCNN-based model is more powerful than 
the traditional peak-merge algorithm, as it can 
remove the secondary electrons more accurate

More accurate 
secondary e-
removal

Trad.

ML

Traditional clusterization: adjacent-peak merge



PID performances with supervised models
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dN/dx resolutions for high momenta 
pions/kaons are < 3%，which are 
much better than typical dE/dx ~5%

The reconstructed ncls distributions 
are very well Gaussian-like

1.2m track length

Reconstructed # of clusters distributions

dN/dx resolution



PID performances with supervised models (II)
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~10% improvement for ML (equivalent to 
a detector with 20% larger radius)

K/π separation power vs. momentum

1m track length

K/π separation power @ 20 GeV/c

Could achieve 3σ for 1m track length. For 
1.2m track length (current CEPC baseline), 
the separation is 3.2σ

Scaled by 𝐿



Domain adaptation for test beam data

◼ Challenges for real data
◼ Imperfect simulation

◼ Incomplete labels in real data 

◼ Solution: Domain adaptation
◼ Transfer knowledge between 

simulation and real data
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Align data/MC samples with Optimal Transport

Semi-supervised domain adaptation



Model validation by pseudo data
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Model AUC pAUC (FPR<0.1)

Ideal 0.926 0.812

Baseline 0.878 0.749

Unsupervised DA 0.895 0.769

Semi-supervised DA 0.912 0.793

Numeric experiment with pseudo data in 2 domains 
(simulation domain & data domain)

◼ Note:
◼ Ideal = Supervised model in data domain
◼ Baseline = Supervised model in sim. domain
◼ Unsupervised DA = Baseline + OT
◼ Semi-supervised DA = Baseline + OT + semi-

supervised setup
◼ The OT and the semi-supervised loss improve the 

results, and the performance of the semi-supervised 
DA model is very close to the ideal model

Improve

Improve



Peak finding for test beam data

DL algorithm is more powerful to discriminate signals and noises

Single-waveform results between 
derivative alg. and DL alg.

Multi-waveform 
results for samples 
in different angles
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Note: Require 
similar efficiency 
for both cases

Scale w.r.t.
track length

The algorithm is stable w.r.t. track length



Conclusion

◼ Two machine learning algorithms are developed for dN/dx reconstruction. In principle, 
the method can be applied to similar feature extraction tasks in signal processing.

◼ The supervised model has 10% improvement on K/pi separation w.r.t. traditional 
algorithm. The situation could be similar for the semi-supervised domain adaptation 
model.

◼ When studied with the full-simulation samples using a supervised model, the CEPC 
drift chamber achieves < 3% K/pi resolution and > 3.2σ K/pi separation.

◼ When studied with the test beam samples, the semi-supervised domain adaptation 
model successfully transfer information from simulation and achieve stable 
performances.
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Thank you!



Backup
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Traditional peak finding
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• Derivative-based peak finding
• Take first and secondary derivatives
• Require threshold passing

• Challenges
• Noises can pollute the signal
• Signals are highly piled up

pileup signals

noises

Some noises can 
also pass the 
threshold

Only 1 out of 3 
signals is detected



Traditional clusterization

21

• Timing-based clusterization
• Merge adjacent peaks

• Challenges
• Electrons from different clusters can overlap 

Color code: cluster ID

Cluster 11 & 12 
are overlapped

Difficult to set a cut to 
discriminate electrons from 
intra and inter clusters



Additional plots for domain adaptation
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