

Status of CEPCSW

Tao Lin (on behalf of CEPC software group)

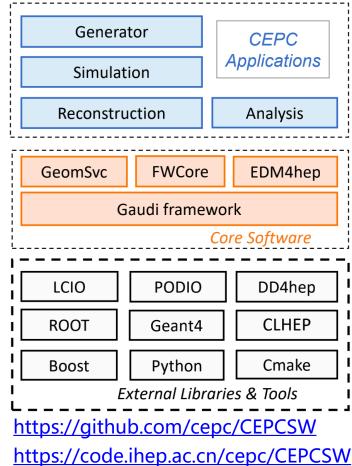
2024 European Edition of the International Workshop on the Circular Electron-Positron Collider

Marseille, FRANCE

Apr 8 - 11, 2024

Outline

- Introduction
- Overview of CEPCSW
 - Detector description
 - Simulation
 - Reconstruction
- Towards Reference Detector TDR (short-term tasks)
 - Requirements
 - Software Releases
- Plans (long-term tasks)
- Summary


Introduction

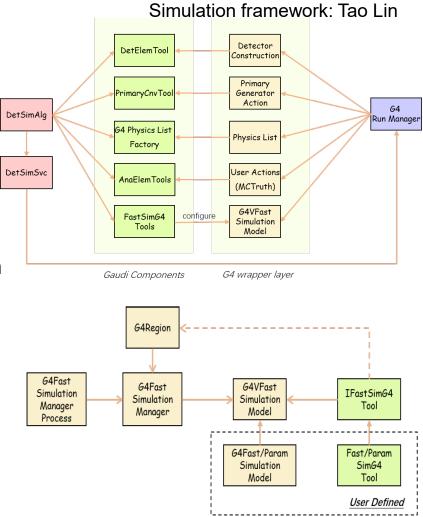
- The CEPC software development first started with the iLCSoft
 - Reused most software modules: Marlin, LCIO, MokkaC, Gear
 - Developed CEPC' s software components for simulation and reconstruction
 - Massive M.C. data produced for detector and physics potential studies
 - CDR was released in Nov, 2018, based on results from the iLCSoft
- New CEPC software (CEPCSW) prototype was proposed at the Oxford workshop in April 2019
- The consensus among CEPC, CLIC, FCC, ILC and other future experiments was reached at the Bologna workshop in June 2019
 - Develop a Common Turnkey Software Stack (Key4hep) for future collider experiments
 - Maximize the sharing of software components among different experiments

Overview of CEPCSW

- CEPCSW software structure
 - Core software
 - Applications: simulation, reconstruction and analysis
 - External libraries
- Core software
 - Gaudi/Gaudi Hive: defines interfaces to all software components and controls their execution
 - EDM4hep: generic event data model
 - K4FWCore: manages the event data
 - DD4hep: geometry description
 - CEPC-specific framework software: generator, Geant4 simulation, beam background mixing, fast simulation, machine learning interface, etc.

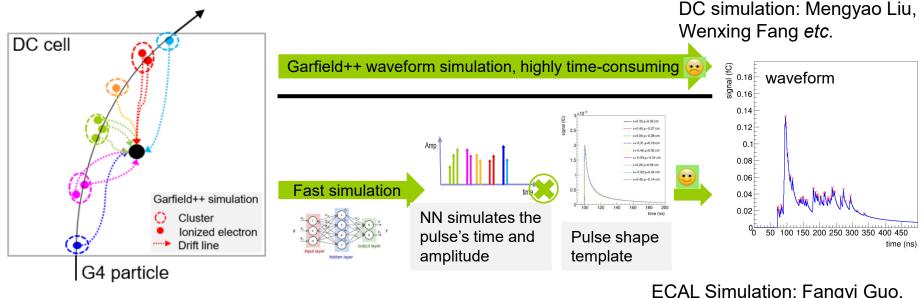
Core software: Wenxing Fang, Xingtao Huang, Teng Li, Weidong Li, Tao Lin, Jiaheng Zou *etc*.

Detector Description

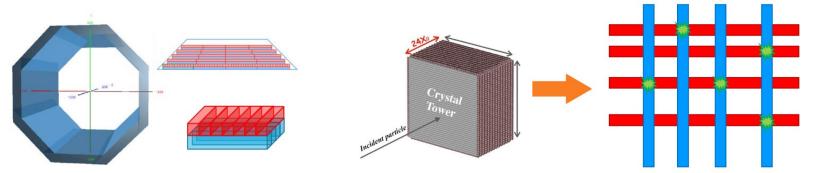

- DD4hep is adopted to provide the full detector description with a single source of information.
- Different detector options are managed in a git repository.
 - Easy to track the changes of detectors and compare between different options.
- Available options in CEPCSW
 - CEPCv4: baseline detector in Conceptual Design Report
 - CRD: CEPC Reference Detector

Geometry: Chengdong Fu

Model	Description	MainTracker	Ecal	Hcal	Status
CRD_01_v01	coil inside simulation model	SIT+DC+SET	crystal	RPC	developing
CRD_01_v02	strip SET	SIT+DC+SET	crystal	RPC	developing
CRD_01_v03	MOST2 vertex	SIT+DC+SET	crystal	RPC	developing
CRD_01_v04	smaller center beam pipe	SIT+DC+SET	crystal	RPC	developing


Detector Simulation (1)

- Full detector simulation has been developed based on Geant4.
 - A unified simulation framework: integrate Geant4 and Gaudi.
 - Event data: SimTrackerHit and SimCalorimeterHit
 - Generator interfaces: HepMC, LCIO, StdHep, Beam background, Particle Gun
 - Fast simulation interfaces: Geant4 Region based.
 - Detector responses: trackers, DC, TPC, calorimeter
 - Monte Carlo truth: association between hits and MC particles
- The background mixing algorithm is under development.



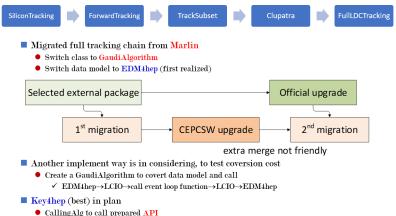
Detector Simulation (2)

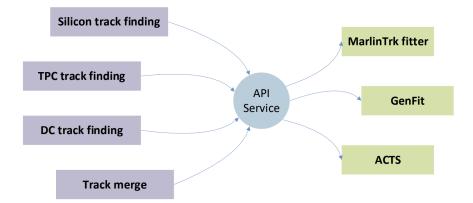
 The simulation software supports the software development of both DC and ECAL.

ECAL Simulation: Fangyi Guo, Yang Zhang, Shengsen Sun etc.

Reconstruction (1)

- Existing algorithms are migrated from Marlin to CEPCSW.
- New reconstruction algorithms are developed as well.

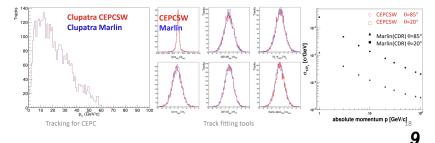

Detector	Package	Status
Silicon	SiliconTracking	Migration Done
	ForwardTracking	Migration Done
	TrackSubset	Migration Done
	FullLDCTracking	Migration Done
TPC	Clupatra	Migration Done
DC	RecGenfitAlg	Under development
ECAL/HCAL	CRDEcalRec	Under development
Muon		Under development


Reconstruction (2)

Tracking software

- A complete tracking chain.
- Configure the tracking algorithms for different detectors and perform the merging algorithm.
- For silicon tracker: SiliconTracking, ForwardTracking, TrackSubset, ConformalTracking
- For TPC: Clupatra, ArborTracking

Migration/Implementation

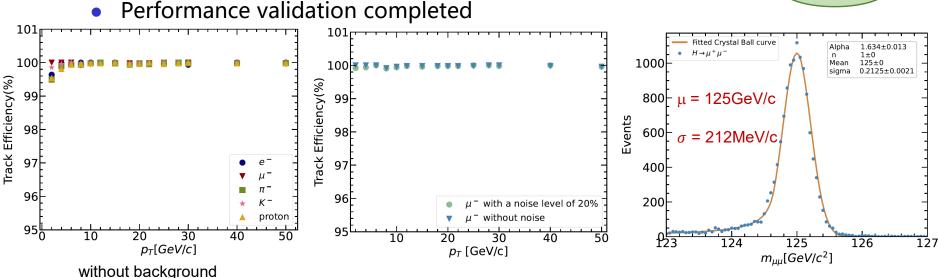


Chengdong Fu | Tracking for CEPC

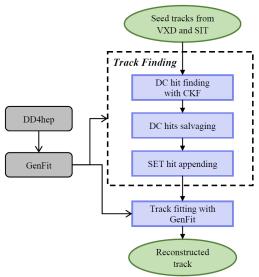
Phase I: Migrated MarlinTrk

ECFA Higgs Factories: 1st Topical Meeting on Reconstruction

- Create service to convert DD4hep extension to Gear as KalTest geometry input
- Create service to create MarlinKalTest object, called by tracking algorithm
- Switch data model to EDM4hep
- After migration
 - Fully identical on same digitized input
 - consistent on different input (different random)
- Upgrade to DD4hep surface (DDKalTest) is in plan

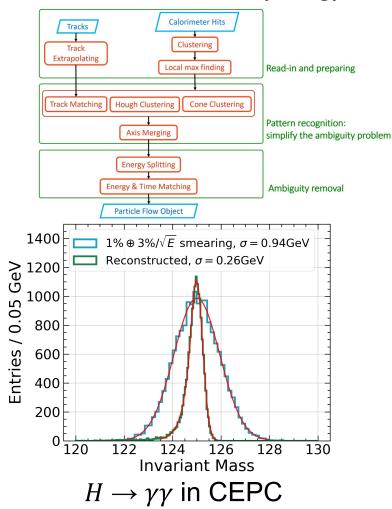

- cannight to can prepared AP1
 event model support with same code
- event model support with same code is important

Reconstruction (3)


DC Reconstruction

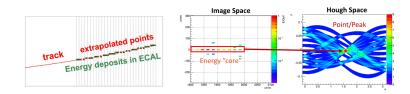
Track Finding with Combinatorial Kalman Filter

- Migrate from Belle2
- Track Fitting with GenFit
 - Using DAF Kalman filter
- Implementation
 - Extrapolation based on GenFit
 - Field, material and geometry from DD4hep
 - A data format converter from EDM4hep


Mengyao Liu, Weidong Li, Xingtao Huang, Yao Zhang, Ye Yuan *etc.*

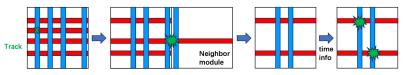
Reconstruction (4)

Long Crystal Bar ECAL


• For details, see talk by Fangyi

Fangyi Guo, Weizheng Song, Shengsen Sun, Linghui Wu, Yang Zhang *etc.*

- > Multiple algorithm for shower recognition:
 - Charged particle: track-matching.
 - EM shower: Hough transformation.
 - Fragment: cone-clustering.


Reconstruction algorithm

- Splitting for the overlapped shower:
 - · Calculate the expected energy deposition from EM profile.
 - Expected energy: $E_{i\mu}^{exp} = E_{\mu}^{seed} \times f(|x_i x_c|)$ • Assigned weight: $w_{i\mu} = \frac{\sum_{i,\mu}^{exp}}{\sum_{i}\mu^{exp}}$

Ambiguity removal:

Information from: track, neighbor tower, time.

ware task

Clustering

Shower1

Shower2

v/mm

Ba

00 1000 2000 2000 2100

Overlap: energy splitting

Entries 24 Mean 22.05 Std Dev 26.64

Ambiguity problem

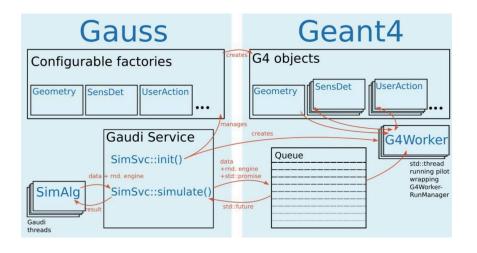
Towards Reference Detector TDR

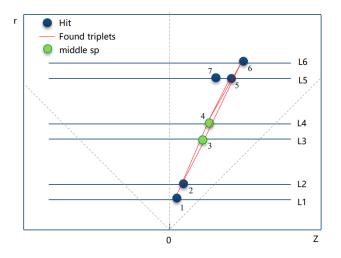
- Motivation
 - Support the fast iterations of the reference detector design.
 - Release the latest versions of detectors to support physics and performance studies.

Software Releases for TDR

- The software development
 - Adopt a new version scheme: tdr *YY.MM*
 - Driven by Issues and Merge Requests. Project management via milestones.
 - The repository is hosted at IHEP GitLab.
 - Source code is mirrored to GitHub.
- Short-term plans before July.

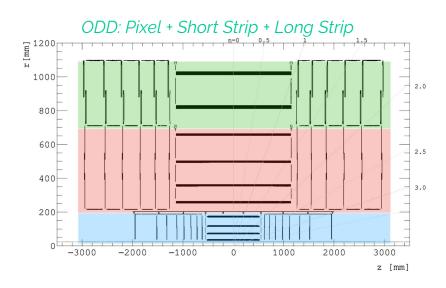
Release	Timeline	Features
tdr24.3 √	March	Core software
tdr24.4	April	Tracking and Background mixing
tdr24.5	May	PID and muon
tdr24.6	June	Calorimeters

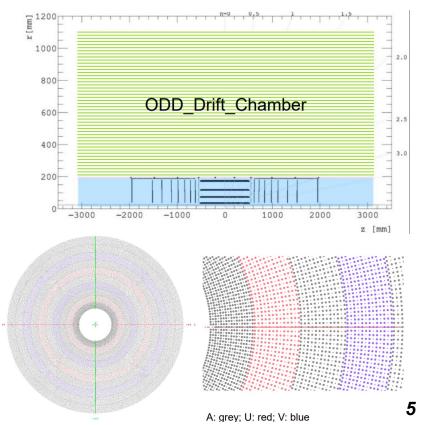

- Latest version could be found in CVMFS:
 - /cvmfs/cepcsw.ihep.ac.cn/prototype/releases/tdr24.3.1/
- Baseline performance will be released as well.


Long-term Plans in CEPCSW (1)

Parallelization and Heterogeneous

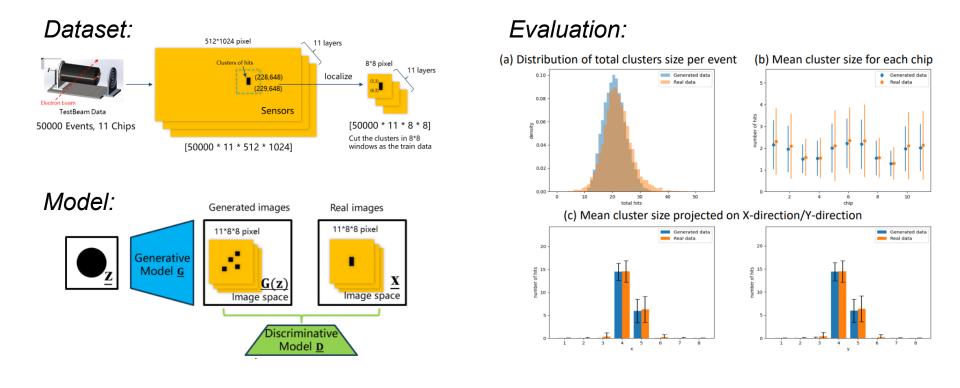
Xingtao Huang, Teng Li, Weidong Li, Tao Lin, Yizhou Zhang, Jiaheng Zou


- CEPC-on-Gaussino prototype: CEPC is working with Key4hep project members re-implementing the detector simulation software based on Gaussino
- Seeding with TRACCC: CEPC silicon detector is used as an example. Develop the 6-layer seed finding in GPU.


Long-term Plans in CEPCSW (2)

- Contribution to common software, such as ACTS
 - Adding Drift Chamber to Open Data Detector

https://gitlab.cern.ch/acts/OpenDataDetector More details <u>here</u> Xiaocong Ai, Xingtao Huang, Weidong Li, Tao Lin, ACAT 2024



Long-term Plans in CEPCSW (3)

Machine Learning

Yizhou Zhang, Xiaozhong Huang, Weidong Li *etc.* CEPC Workshop 2023

 ML-based digitization for CEPC vertex detector: training based on the test beam data of TaichuPix-3.

Summary

- Towards the CEPC Reference Detector TDR, there will be four major software releases before June.
 - The March version is already released.
 - The next versions will keep optimization to follow the change of detector designs.
 - Performance plots will be released based on the latest software.
- After the choice of reference detector design, the software development will focus on the design.
- Long-term development is focus on the new technologies to boost CEPCSW performance.

Source code:	https://github.com/cepc/CEPCSW https://code.ihep.ac.cn/cepc/CEPCSW
Mailing list:	cepc_software@maillist.ihep.ac.cn

Thank you for your attention!