

28 nm electronics developments for future pixel detectors

Marlon Barbero, Roua Boudagga, Denis Fougeron, Eva Joly, Mohsine Menouni

CPPM - Aix-Marseille Univ, France

The 2024 European Edition of the International Workshop on the Circular Electron-Positron Collider (CEPC) Marseille, France, April 8th-11th

Outline

- Introduction: Timing effect
- 4D tracking in the future experiments
- Electronics and sensor requirements for 4D tracking
- R&D activities at CPPM
 - -28 nm chip design
 - -SEE/SET Testing
 - -Ring Oscillator Design
 - -Analog FE pixel array design and simulations
 - -Preliminary test results
- Conclusion and perspectives

The effects of timing

- Pile-Up (PU) level increase for the HL-LHC
 - PU average of 200 during HL-LHC (5-10 × LHC)
 - PU adds a new level of ambiguity to the reconstruction process
 - When timing information is available for the tracks, the association of track to vertices becomes less ambiguous

— Using **timing at each layer** along the tracks

Investigating the impact of 4D Tracking in ATLAS Beyond Run 4, Tech. rep., CERN, Geneva (2023), ttps://cds.cern.ch/record/2870326

- For the rate of 200 PU events/BC
 - Timing resolutions of 30 ps is expected to reduce by a factor of 5 the number of pileup tracks per primary vertex

Timing information will be more important at future high-energy, high-luminosity hadron colliders with much higher levels of pileup

4D tracking in future experiments

Hadron colliders

- Timing layers (HL-LHC) Run 4
 - CMS and ATLAS are building silicon-based timing detector layers that will timestamp each track with a precision of 30 ps
 - ATLAS High Granularity Timing Detector (HGTD) and the CMS Timing Detector (MTD) placed in the forward regions (2.4<|η|<4.0)
 - Based on novel Low Gain Avalanche Detectors (LGADs)
 - The readout chip HGTD is an array of 15×15 channels of 1.3 × 1.3 mm²
- The ATLAS and CMS tracker Run 5
 - The two innermost pixel layers will need to be replaced after 5 years (LS4)
 - Pixel time resolution of 50 ps is needed to boost the tracking performances
- Future Circular Collider tracker (FCC-hh)
 - Efficient reconstruction of charged particle tracks in an environment of high pileup density (1000 pileup)
 - Position < 10 μm, Time resolution < 10 ps</p>
 - Radiation levels: 40 Grad and 6×10¹⁷neq/cm² (40 × HL-LHC)
 - A big challenge in sensor and ASIC design

ATLAS High Granularity Timing Detector (HGTD)

Electron colliders

- Linear colliders (ILC, CLIC) and Circular colliders (FCPC, FCC-ee)
 - High spatial precision is required for physics
 measurements -> Pixel size < 25 μm x 25 μm
 - Time resolution at the ns level is sufficient
 - Potential applications of timing at the ps level

Electron Ion Collider (EIC)

- 4D detectors based on AC-LGADs are planned to provide timing capability
- Time resolution of 30 ps is required
- Spatial resolutions of 15 μm to 150 μm depending on the location.

Muon Collider

Initial studies indicate that single hit resolutions of 20 30 ps are sufficient to reduce the Beam-Induced
 Background (BIB) to a manageable level

Pixel design for 4D tracking

- For the next upgrades or next generation of hadron collider :
 - ATLAS, CMS and LHCb trackers upgrades (Run5), or for FCC-hh -> Very long-term
 - High spatial resolution and high time precision
 - Very high radiation tolerance
 - Hybrid pixels with a dedicated ASIC bonded to the sensor is the best suited to these applications Very rad-hard

Rad-hard

ATLAS/CMS inner layers upgrac	les
-------------------------------	-----

Pixel size	25µm × 25 µm
Sensor capacitance	< 50 fF
Time resolution	< 50 ps RMS
Consumption (pixel)	<5 µA
Threshold	<600 e-
Hit rate	8 GHz/cm ²
Hit rate (pixel)	5 kHz
TID	> 1 Grad

M. Ferrero et. Al : Nuclear Inst. and Methods in Physics Research, A 919 (2019) 16-26

trenches columns

Doug Berry: FERMILAB-CONF-22-284-PPD1

3D sensors

- Sensor candidates currently being considered for 4D tracking
 - LGAD sensors with modification of the gain implant profile
 - Not yet satisfying a fluence > 2-3 × 10¹⁵ MeV neq/cm²
 - 3D-trench sensors developed and tested within the TimeSPOT project
 - No performance loss up to fluences of 2.5×10^{16} MeV neg/cm²
 - Front end electronics
 - Need of higher density and higher speed regarding the RD53 chip designed with the 65 nm process
 - **28nm CMOS technology** is considered as the next node for highly integrated chips such as pixel readout chips April 9 2024 CEPC Workshop - Marseille 2024

CPPM activities

R&D activities at CPPM

- R&D around hybrid pixels for future upgrades and future colliders with the 28nm CMOS technology
 - -The radiation tolerance of the 28nm process up to 1-2 Grad
 - -Time measurement with a resolution better than 50ps
 - -Small pixel size -> 25µm × 25µm
 - Context
 - RD53 collaboration shows a strong interest in these developments for the future upgrades of ATLAS and CMS trackers
 - —The project is part of the R&D project DEPHY and can be extended to the other IN2P3 labs interested in the 28 nm process
 - -This work is done with the **CERN R&D Program** on technologies for **Future Experiments**
 - - -WG 7.3a (4D and 5D techniques) to develop front ends with high temporal resolution
 - -WG 7.4b (Advanced and hardened CMOS nodes) to study the effects of radiation on highly advanced processes

28 nm chip design

- R&D on hybrid pixels
 - Process qualification in terms of performance for analog, low-power and low-noise circuits
 - Architecture studies
 - Fast charge amplifier array
- Study of Single Event Effects (SEE)
 - Measure the SET cross-section
 - Measure the SET pulse width with a good resolution < 20 ps
 - Measure the effect of the std cell size
- TID tests and qualification
 - Compatibility with typical dose levels for future projects
 - 28 nm process device qualification
 - Gate delay evolution with TID and the effect of the std cell size
 - — TID Effects modeling → Analog and digital simulations with TID effects

- Mini@sics of 2×1 mm2 received June 2023, consisting of 4 main blocks
 - Analog pixel array (25×25 μm2) with Fast charge amplifiers for high time resolution
 - SET test structures
 - Ring Oscillators for TID tests on digital standard cells
 - Test structures for TID tolerance studies

SEE/SET Testing

- Single Event Transient (SET) sensitivity increases with process advance
 - Propagation through combinatorial logic and generate SEU in memories
 - Sensitivity to SET increases with speed
- Implementation of test structures to characterize the 28 nm process for SET tolerance

- Objectives :
 - Measure the SET cross-section
 - Measure the SET pulse with a good resolution < 20 ps
- Allows as an example to define the delay to be used for the triplication with time delay mitigation

SET chip design

SET sub-bloc synoptic

- Each sub-bloc contains
 - 3 target cells made up of thousands of basic cells + 1 calibration input
 - Circuit for SET width measurement 96 delay cells (13ps/cell) -> from a few ps to 1 ns
 - Shift register to send the data to the output when a trigger signal occurs
 - 31 SET sub blocs

- 24 uses SVT target cells (7T, 9T, 12T) -> Effect of the cell size
- 7 uses LVT or HVT target cells -> Effect of the device options
- The whole bloc contains 6 inputs / 13 outputs
- In addition to SET testing, this constitutes a sub-block of the TDC required in the pixel front end design

Ring Oscillator chip design

- Study of the effect of TID on the performance of digital standard cells
- Timing of combinatorial or sequential cells
- Leakage currents and static power
- Effects of device size on TID tolerance
- Design based on the digital flow
- 96 Rosc sub-bloc
 - Cell size (7T, 9T,12T)
 - Driving (D0, D2, D4)
 - SVT, LVT, HVT

Basic cells	Frequency (MHz)	
INVD0	154	
INVD2	222	
NAND0	118	
NAND2	143	
NOR0	111	
NOR2	139	

Simulation

Nam	0+ Cursor 0+	0 [100.0	000pg	200.000ps	[300.000ps	400,000ps	500.000ps
- Diable	1						
0ut(500:0]	'h 155555_)	100000_00000005_00000000_0000005555_000000		1555555_5555555555_555555555_555555555_5555		155555_55555555_55555555_55555555_555555	
	1						
	0				n na		
- 40 Out (4983	1						
	0						
	1		mmmmmm				
- Out (4953	0		uuuuuuu		nnnnnnnnn		
	1						mmm
	0						
	1	LUL .					
	0						
	1						
	0		uuuuuuuuu				

Fast amplifier design

- Study the limits to time resolution in the analog front- end designed with the 28 nm CMOS process
 - Effects of the Current bias, power supply, Bandwidth, Noise ...
- Design and test a pixel array of 36 × 12 cells where only the analog part is considered and implemented
- The time resolution of the pixel:

 $\sigma_{total}^2 = \sigma_{jitter}^2 + \sigma_{timewalk}^2 + \sigma_{Landau}^2 + \sigma_{TDC}^2$

Minimizing the front-end jitter corresponds to :

- Low RMS noise of the charge amplifier (CSA)
- High output voltage
- Small rise time \rightarrow High bandwidth

$$\sigma_{jitter} = \frac{\sigma_{noise}}{dV/dt} = \frac{t_r}{\left(\frac{S}{N}\right)}$$

Analog FE pixel prototype

- For each pixel :
 - The charge amplifier current bias can be set in the range of 2μA-20μA
 - MOM capacitance connected to each preamplifier input -> test for different input capacitance values
- Large bandwidth buffers (> 1GHz) implemented and connected for a few pixels for direct jitter measurement
- Simulations for $I_{CSA} = 5 \mu A$
 - dV/dt = 100 mV/ns
 - RMS noise = 97 e- RMS for Cin = 100fF
 - Jitter < 100 ps RMS for input charge > 4 ke-
 - Jitter < 40 ps RMS for charge > 10 ke-
- Each pixel contains : CSA + Discriminator + 6 bit DAC
 - Size : 20 μm × 12 μm

Pixel array of 36 × 12 pixels

50 superimposed transient noise simulations

April 9 2024

CEPC Workshop - Marseille 2024

Prototypes 28nm sur PCB

Preliminary results

- The pixel array prototype is working properly
 - The 3456 registers can be configured correctly
 - The output signal of the test pixel is consistent with simulations
 - intensive testing under way
- Ring oscillators
 - Minor configuration issue but should not prevent testing of the various blocks
- SET block
 - To be tested soon
- Devices characterization
 - Waiting for the PCB with wire bonded block

Sortie CSA pixel 36

CEPC Workshop - Marseille 2024

Conclusion and perspectives

- 28nm prototype test boards received the beginning of 2024
 - -Testing has started and first results are quite promising
 - -4 different design to be tested and characterized
 - -Existing test-setup based on a beagle-bone board to be used
- Continuation of the project
 - —The project is part of the IN2P3 R&D DEPHY project
 - -Functional tests to be done in Q2 2024
 - -Irradiation tests (TID and SEE) in Q3-Q4 2024
 - -A new 28 nm design focused on larger size pixel array
 - -Implementation of TDC related to ToA and ToT
 - -The possibility to bump bond the FE array with sensor array
 - -Use of CERN PDK makes the design more manageable
 - -Prototype submission scheduled for Q4 2024

Thank you for your attention

Time resolution

The time resolution of a detector can be expressed as follows: $\sigma_{total}^2 = \sigma_{jitter}^2 + \sigma_{timewalk}^2 + \sigma_{Landau}^2 + \sigma_{TDC}^2$

σ_{jitter}

- Due to the noise of the electronic front-end including the sensor
- The jitter is proportional to the rise time and inversely proportional to the S/N ratio.
- The rise time depends on the FE bandwidth and is proportional to the drift time of charge in the sensor

$\sigma_{timewalk}$

- Related to the variation of the deposited charge event-by-event
- Variation of the time of arrival (TOA)
- Time walk is corrected by :
 - variable threshold → Constant fraction discriminator (CFD)
 - constant threshold correction
 - Correct the time of arrival (TOA) with a calibration based on the time over the threshold (TOT)

σ_{Landau}

- Due to the Landau distribution of the deposited charge
- Represents the spatial variation of the deposited charge along the path
 - Charges from different depths are collected at different times.
- The effect is small for thinner devices or sensors with short drift times
 - Absent in 3D detectors
 - Not negligible in LGAD sensors

$\sigma_{\textit{TDC}}$

- Due to the Time to Digital Converter (TDC) binning
- Bin size divided by $\sqrt{12}$ which is in general small

Front-end electronics and ASIC R&D

Charge amplifier (CSA) Vout = CF×Qsensor Slow slew rate Less noise

 The choice of the fast amplifier depends on the timing specifications and the sensor bandwidth

Current amplifier lout = A×Isensor Fast slew rate High noise Transimpedance amplifier Low Rin Vout = RF×Isensor High bandwidth High noise

- Front end based on charge amplifier (CSA)
- High-resolution TDC
 - 1 TDC can be shared by several FEs
- TOA and TOT measurements

Circuit de lecture du détecteur

- ITkPixV2 : puce de lecture de production pour les pixels de ATLAS ITk
 - Process CMOS 65nm
 - Taille : 20.054 mm × 21.022 mm
 - Zone sensible :384 x 400 pixels de 50 x 50 μm²
 - 153 600 pixels organisés en 2400 noyaux
- Tolérance au rayonnement jusqu'à une dose ionisante totale de 1Grad
- Préamplificateurs de charge
 - Faible bruit (<100 e)
 - Faible consommation (<5 uW) par pixel
- Traitement d'un taux de hits de 3 GHz/cm2
- Mise en mémoire tampon des données pendant une durée maximale de 12.5 μs
- Lecture des données déclenchée à 1MHz
- Nécessite des liaisons de données jusqu'à 5 Gbit/s

Introduction

- Since ~1993: Pixel detectors for tracking and vertexing in the LHC and HL-LHC environments
- **FE-I3 readout chip:** (250nmCMOS process)
 - 2880 pixels of 50μm × 400μm
- FE-I4 chip the IBL (130 nm CMOS process)
 - 26880 pixels of 50μm × 250μm
- RD53 chip for ATLAS/CMS HL-LHC upgrades (65 nm CMOS process)
 - Size: 20 mm × 21 mm
 - 153 600 pixels of 50μm × 50μm
 - Time over Threshold (ToT) measurement implemented in the pixel (resolution of 6.25 ns)
 - Precision ToT and ToA (resolution of 1.5 ns) implemented per each core column
 - Radiation levels :
 1 Grad and 2 × 10¹⁶ (1 MeV neq) /cm²

Analog FE pixel prototype

- Pixel array of 36 × 12 pixels
 - Only the analog pixel is considered and implemented
 - Design done for Sensor capacitance of 100 fF (50μm × 50 μm)
- The goal of this pixel matrix design is to study the limits to time resolution in analog front designed with the 28 nm CMOS process
 - Bandwidth, Noise, Current bias, power supply
- The time resolution of the FE is defined by the total jitter of the pixel FE

$$\sigma_{FE} = \frac{t_r}{\left(\frac{S}{N}\right)}$$

- Minimizing the jitter corresponds to :
 - Low RMS noise of the charge amplifier
 - High output voltage
 - Small rise time \rightarrow High bandwidth

	High granularity	Ultra high granularity
Pixel size	50µm × 50 µm	25µm × 25 µm
Sensor capacitance	100 fF	< 50 fF ?
Time resolution	< 50 ps RMS	< 50 ps RMS
Consumption (pixel)	<20 µA	<5 µA
Threshold	< 600 e-	<600 e-
Hit rate	8 GHz/cm ²	8GHz/cm ²
Hit rate (pixel)	20 kHz	5 kHz
TID	2-4 Grad	2-4Grad

2 options for ATLAS/CMS inner layers upgrades

Semi-conductor pixel detectors

- Hybrid devices with a dedicated ASIC bonded to the sensor
 - R&D driven by LHC
 - Still solution for the HL-LHC pixel detector upgrade (Planar and 3D sensor, LGAD ??)
- Monolithic Active Pixel Sensors (MAPS)
 - Integrating the sensor and the readout electronics
 - Compromise between charge collection and signal read-out speed
- Depleted Monolithic Active Pixel Sensors (DeMAPS)
 - High radiation hardness and read-out speed

Technology choice and ASICs evolution

- The CERN community is lagging behind in the use of the new processes
 - Cost and accessibility
 - Take years to design our complex chips
 - Risk of technology aging (factory can abandon the node)

- Most of the designs for CERN experiments are based on 65 nm and 130nm CMOS
 - Qualified by CERN for radiation-hardness
- HL-LHC : Over 40 front-end ASICs have been developed in 130 and 65nm CMOS technology for detector readout
 - Access to foundry and design tools run centrally from CERN
 - Common projects for the specific developments like data links or power conversion
 - Collaborative developments across experiments (RD53 or Medipix)
- 130 and 65nm CMOS technologies are already fifteen to twenty years old
- 28nm CMOS technology is considered as the next node for highly integrated chips such as pixel readout
- A cheaper process should be preserved for less dense/demanding applications
- The requirements of lepton and heavy-ion colliders seem to be mostly within reach of technologies from HL-LHC

24

Technology choice and ASICs evolution

- FCC-hh or a muon collider
 - Electronics can become a facilitator, but also a potentially limiting element
 - Access to some of the required technologies and tools
 - The R&D strategy will be driven by what is feasible and not just by the requirements of experiments
- CMOS nodes below 28nm need to be qualified
 - Potential use in future applications requiring extreme miniaturization, High speed and low power
- High performance CMOS image sensors are based on stacked active layers to reduce pixel pitch and increase functionality
- Commercial CMOS image sensors are a good example, stacking two or three device layers fabricated in different technologies
 - Integration of different technologies: sensor/analogue/digital/photonic functions
 - R&D in TSVs and bump-less techniques is needed

- For ASICs, the microelectronics industry has reached nanoscale CMOS nodes (< 5nm), based on new transistor structures
 - FinFETs devices
 - GAA devices

