

OBELIX sensor for the upgrade of the Belle II Vertex Detector

Roua BOUDAGGA – CPPM, Aix Marseille Université, CNRS/IN2P3, Marseille, France

on behalf of the Belle II VTX collaboration

04/09/2024

boudagga@cppm.in2p3.fr

PARTICULES DE MARSEII

- 1. The BELLE II Experiment
- 2. The current Vertex Detector (VXD)
- 3. The VTX Upgrade Proposal
- 4. The Tower Jazz-Monopix2 chip
- 5. The OBELIX sensor : Optimized BELLE2 pIXel sensor
- 6. Conclusions

Institut für Hochenergiephysik

technische universität dortmund

boudagga@cppm.in2p3.fr

Outline

The Belle II Experiment

- Located at the SuperKEK-B collider in Tsukuba, Japan
- $\circ~$ Asymmetric e⁺- e⁻ collider at 4 / 7 GeV and Vs = 10.58 GeV
- Luminosity frontier experiment, exploring new physics
- Restart beam operation in 2024 after a long shutdown (LS1)
- World luminosity record : $L_{max} = 0.47 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$ in June 2022
- Target instantaneous luminosity of $6x10^{35}$ cm⁻² s⁻¹, currently $0.47x10^{35}$ cm⁻² s⁻¹
- Target integrated luminosity of 50 ab⁻¹, currently 0.43 ab⁻¹
 - Machine related beam background will increase with high luminosity
 - Efficiency, resolution and performance of data tracking could degrade with higher occupancy from background
 - Extrapolation to this target luminosity has large uncertainty and limited safety margins

- An upgrade of the machine elements and the detector's **interaction region (IR)** is required :
 - $\circ~$ To cope with the higher luminosity provided by the SuperKEK-B accelerator
 - \circ $\,$ To improve detector robustness against high backgrounds $\,$
 - To provide larger safety factors for running at higher luminosity
 - To increase longer term subdetector radiation resistance
 - To improve overall physics performance

NUCLÉAIRE

PARTICULES

• A **long shutdown (LS2)** is foreseen around 2028 and provides the opportunity to install an upgraded detector

A new vertex detector concept VXD is proposed

Peak Luminosity [x10³⁵cm_{.2}s^{.1}]

The Current Vertex Detector (VXD)

- The main tracker device is the central drift chamber (CDC), which is complemented by the Vertex Detector (VXD)
- Its main task is the reconstruction of decay vertices in addition to low momentum track finding
- $\circ~$ Current VXD performance good and operating with low background occupancy < 1 %~
 - $\circ~$ Well below limits : PXD \sim 3%, SVD \sim 5%
- $\circ~$ Two different technologies compose the VXD :
 - Pixel Detector (PXD)

CNIS NUCLÉAIRE

& PARTICULES

- Two layers of DEPFET pixel sensor
- $\circ~$ 50 to 75 μm pixel pitch
- \circ 20 µs integration time
- Silicon Vertex Detector (SVD)
 - Four layers of double sided silicon strip sensor
 - 6 cm long strips
 - $\circ~$ Expected occupancy \sim 3% after LS2

boudagga@cppm.in2p3.fr

Silicon Vertex Detector (SVD)

The VTX Upgrade proposal

- A new fully pixelated CMOS detector to replace the VXD VTX
- Improved tracking resolution and space-time granularity
- Reduced material budget less than 2%X0 instead of 3.8%X0 (sum of all layers)
- 5 straight layers with Depleted Monolithic Active CMOS Pixel Sensors (DMAPS) process
- $\circ~$ L1 and L2 (iVTX)
 - All silicon ladders
 - Air cooling (constrains power)
- L3 to L5 (oVTX)
 - Carbon fiber support frame
 - Cold plate with liquid cooling

	L1	L2	L3	L4	L5	Unit
Radius	14.1	22.1	39.1	89.5	140.0	mm
# Ladders	6	10	8	18	26	
# Sensors	4	4	8	16	48	per ladder
Expected hitrate*	19.6	7.5	5.1	1.2	0.7	MHz/cm^2
Material budget	0.1	0.1	0.3	0.5	0.8	% X ₀

The VTX detector mechanics

- Carbon Fiber support structure
- Cold-plate with pipes for liquid coolant circulation
- Chip and Flex circuit for power and signal glued on top

- iVTX Inner Layer Concept :
 - 4 contiguous sensors diced as a block from the wafer
 - \circ Flex print cables
 - Redistribution layer for interconnection
 - Heterogeneous thinning for thinness and stiffness

• A same monolithic CMOS pixel sensor chip for all layers : **Optimized BELLE II pIXel sensor (OBELIX)**

The Tower Jazz-Monopix2 as prototype

Chip architecture of TJ-Monopix2

TJ-Monopix2 sensor bonded on a test board

- Developed for ATLAS experiment
 - FE derived from ALPIDE
 - 4 FE flavors
 - Column-drain R/O architecture
- DMAPS Tower Jazz 180 nm process
- \circ 2 × 2 cm² chip : 512 × 512 pixels
- $\circ~$ Pixel pitch: 33.04 \times 33.04 μm^2
- Expected from design (simulations):
 - $\circ ~ \sim$ 100 e– min. threshold
 - 5-10 e– threshold dispersion (tuned)
 - \circ >97% efficiency at $10^{15} n_{eq}$ /cm²
 - $\circ \sim 5 e noise$
 - $\,\circ\,\,$ Fully efficient with hit rate 120 MHz/cm²
 - \circ Power: ~ 1 μ W/pixel

Baseline option for OBELIX design

boudagga@cppm.in2p3.fr

- **Full characterization** on bench:
 - Threshold scans (lowest value, dispersion)
 - Noise testing
 - o ToT (Time Over Threshold) calibration
- \circ $\,$ Control and data acquisition system based on the BDAQ53 setup

Setup for BDAQ53 Test – developed by Bonn

- \circ $\;$ Typical characterization test results after tuning the matrix :
 - Thresholds between 200 to 300 e–
 - Average noise varies from 7 to 8 e-
- Tests on several chips are on going in different Labs : (Bonn, Pisa, HEPHY, CPPM, Gottingen)

Ο

The Tower Jazz-Monopix2 Testing

- Efficiency/Resolution measurements
- o Radiation hardness (NIEL and TID irradiation campaigns in progress)

• Performed at DESY in June 2022:

- o Unirradiated chips
- Preliminary settings used, beam e- at around 5GeV
- $\circ~$ Use very high threshold \sim 550 e-
- Hit efficiency : 99.54 +- 0.04%
- \circ Cluster position residuals: 9.15 μ m

Setup for testbeam – @Desy

- New Test beam in July 2023 (Data analysis on-going):
 - \circ Lower threshold settings ~ 310e⁻ threshold
 - \circ Irradiated chips
- \circ ~ Some preliminary results shown for the irradiated chip at 5x10^{14} \, n_{eq}/cm^2
 - Efficiency of 99.79% for irradiated chip, with small inefficiency in the pixel corners
 - $\circ~$ Cluster position residuals : 9.44 $\mu m~$ -> about pitch/v12 \sim 9.5 μm binary resolution
 - Decrease in cluster size after irradiation Unbiased DUT residuals u for all clusters

The OBELIX Sensor

Sensor specifications :

- Tower Jazz 180 nm process
- Hit rate up to 120MHz/cm²
- TID tolerance : 10 MRad / year
- \circ NIEL tolerance : 5x10¹³ n_{eq}/cm²/year
- \circ Spatial resolution < 15 μ m
- \circ Power < 200 mW/cm²
- Time precision < 100 ns
- $\circ~$ Trigger at 30KHz average frequency with 5-10 μs latency

- 464 rows and 896 columns
- Overall sensor dimensions around 30.2x18.8 mm²
- $\,\circ\,\,$ Pixel pitch 33x33 μm^2
- Main design is based on the **Tower Jazz-Monopix2** chip

The OBELIX Block Diagram

Analog

- Pixel matrix from **TJ-Monopix2**
- Column drain architecture
- Monitoring ADC
- Temperature sensors

Power pads

• Power regulators added

Aix*Marseille

 Simplified system integration

Digital Periphery

- Main clk-in : 160MHz
- New end-of-column adapted to Belle II trigger
- Timestamped hits stored in memories
- Read-out when timestamp matched with trigger
- Single output at 320 MHz average bandwidth
- RD53 control/readout protocol

The pixel matrix of OBELIX

- The OBELIX sensor inherits the performance of the pixel matrix from TJ-Monopix2 sensor.
- $\circ~$ The same pitch, 33 \times 33 μm^2 , with the same layout for the analog and digital parts
- The Matrix pixel of TJ-Monopix2 is composed of 4 pixel flavors with differences in the Front-End (FE) amplifier and detector input coupling (AC or DC) :
 - Normal FE / Cascode FE
 - HV Cascode FE / HV FE
 - Based on current characterization results, 2 FE flavors are chosen for OBELIX on equal area :
 - $\circ \ \, {\rm Cascode \ FE}$
 - HV Cascode FE

Floorplan of OBELIX (Design on going)

The analog FE design

 \circ $\;$ Two flavors with a cascode pre-amplifier :

- With an input DC-coupling using a forward biased diode (Cascode FE)
- With an input AC-coupling allowing higher bias voltage above 30V (HV Cascode FE)

Input DC-coupling

The LDO regulator architecture

- Power distribution is a major concern as OBELIX is larger than TJ-Monopix2, leading to performance degradation
- Long linear ladders voltage drop across ladder
- An on chip regulator is being developed in OBELIX to compensate the voltage drop and minimize the material budget dedicated to power distribution
- Two LDO (Low Dropout) regulators will be implemented to supply the matrix from both sides through their pass transistor M1
- $\circ~$ The LDO generates the output voltage of 1.8 V \pm 10% necessary for the technology to power the chip
- Wide input supply voltage range of 2V to 3 V

Module division : 4 main parts

SCU – sync & clk divider: digital clk divider, synchronize circuit & clk divider, RxDat format conversion, main function: clock divider, Rx_data SIPO synchronization

CRU – Control Unit: Implementation RD53B interface, which almost keeps the same design as TJ-Monopix2, main functions: command decoder, global configuration

3 TRU – Trigger Unit: Manage pixel data from the matrix-EOC and wait for the trigger to pick them for output

TXU – TX Unit: generate output data and sequential output, main functions: data framing, serializer

- Two new modules are related to the Belle II trigger:
 - TRU : The Trigger Unit
 - **TTT :** The Track Trigger Transmission

The TRU and the TTT

• Trigger Unit (TRU):

- New End-of-column adapted to Belle II trigger
- Handle the incoming data from the pixel matrix with two stages of memory (S1 and S2)
 - S1: Buffers the pixel information during the trigger latency
 - S2: Main trigger memory, associates trigger with hitdata
- Timestamped hits stored in memories
- Read-out when timestamps matched with trigger
- Trigger memory organized in 112 Trigger Groups (TRGs), each connected to 4 double columns.

• Track Trigger Transmission (TTT):

- Quickly provides the coarse pixel information of all hits to trigger of Belle II
- Allows a Belle II-trigger based on track information
- Divides the matrix into 2 to 8 regions (micropixel)
- Produces a one byte word indicating which of these regions is fired
- 160MHz DDR (Double Data Rate) transmission(320Mb/s, 8b/10b encoded)
- Power constrains this function to the oVTX

Conclusions

- The SuperKEK-B collider is planning a major upgrade to reach a high luminosity
- o Reaching the target peak luminosity requires an upgrade of the interaction region and the Vertex Detector
- A new DMAPS VTX is foreseen to improve the performance of the Belle II vertex detector
- The OBELIX sensor based on TJ-Monopix2 chip with TJ180 nm technology is under development with additional features (all on-chip) :
 - \circ Voltage regulators
 - ADC and temperature sensors
 - Trigger logic, up to 10 μs latency at 120 MHz/cm²
 - Precision timing module
 - Fast transmission for trigger contribution
- Development and verification of OBELIX are entering the final stage
- Aiming submission of OBELIX-1 in summer 2024

This work has received funding from the European Union's Horizon 2020 Research and Innovation program under Grant Agreements no 101004761 (AIDAinnova), was supported by Grant CIDEGENT/2018/020 of Generalitat Valenciana (Spain) and has been published under the frame- work of the IdEX University of Strasbourg

Thanks for your attention

04/09/2024

boudagga@cppm.in2p3.fr

Backup slides

Technology: DMAPS

- Monolithic sensor : Combine sensor and readout on the same wafer
- Electronics outside the collection nwell
- Low material budget

- Using an isolated deep well that collects charge and includes both analogue and digital circuits
- Large signal and fast charge collection
- $\circ~$ Sensors can be thinned to 50 μm without signal loss
- Sensors can operate in a high rate environment (< 25 ns)
- $\circ~$ Good radiation tolerance
- Very small sensor capacitance
- Low noise and power