

Timing with Monolithic CMOS Potential applications to CEPC

CEA/Irfu/DphP and CEA/Irfu/Dedip

Yavuz DEGERLI, Fabrice GUILLOUX,

Jean-Pierre MEYER, Philippe SCHWEMLING (also **Université Paris Cité)**

cea irfu

Timing sensor basic ingredients

Illustration taken From N. Cartiglia (VCI 2022)

- Monolithic sensors : Analog Front-End, Time measuring electronics (typically LE discriminator)
- Data processing (TDC, serializers, PLL, sparsification) can ideally also be on same chip, but actual development not easy (risk of analog/digital couplings)

Timing oriented sensor families

Time resolution

Illustration taken From N. Cartiglia (VCI 2022)

Saturated drift velocity in sensor volume \rightarrow Uniform weighting field

Parallel plate geometry, easier for big pixels

".litter" term

Small noise \rightarrow choice of technology, small detector capacitance High dv/dt \rightarrow High electric field (but Vd saturates around 1 V/µm) Intrinsic amplification (LGADs)

Amplitude variation \rightarrow Timewalk, corrected offline

Non-homogeneous energy deposition \rightarrow cannot be corrected, minimized by design

Features of monolithic CMOS sensors

- (Relatively) cheap high volume industrial technology
 - 2-3 k euro/8" wafer, post-processing and dicing included → bare sensor cost for 100 m2 : 7-11 M euros
 - Bump bonding operation not needed for fully monolithic architecture
- Stable and easy operation
- HV-HR wafers available, allows charge collection by drift and not only by diffusion → favorable for fast collection and also for radiation hardness
- Can be designed as a complete SoC, from sensor to DAQ interface
- Presently available technologies are known to be rad-hard up to a few 10¹⁵ 1 MeV neq/cm2
- Can be thinned down to < 100 μ

*Depleted MAPS

TIMING WITH HV-CMOS/DMAPS*

- The objective of our R&D is the development of a monolithic timing sensor in a commercial HV-CMOS process for future high energy physics experiments or for LHC upgrades (timing detectors, after phase 2 upgrades)
- □ LFoundry 150 nm HV-CMOS is one of the CMOS processes studied extensively for the CMOS option of the ATLAS Inner Tracker Upgrade
- Several large size demonstrators already designed and tested for tracking applications (LF-CPIX, LF-MONOPIX1, LF-MONOPIX2) in this process with proven radiation hardness (Bonn, IRFU and CPPM coll.)

HV-CMOS Sensor Pixel

- DNW/HR p-substrate charge collection diode
- HV (≥ 300 V) applied on the substrate (from top or back)
- Large depletion depth (\geq 300 μ m)
- Charge collection by <u>drift</u> (fast)
- No internal amplification
- Electronics can be integrated inside charge collection diode

CACTUS* DEVELOPMENT

- □ The first demonstrator called **CACTUS** for timing in LF 150 nm process designed in 2019
- The front-end in CACTUS is based on an in-pixel fast preamplifier followed by a leading edge discriminator
- Time walk corrections done off-line by ToT measurement
- Expected timing resolution from Cadence & TCAD simulations: 50-100 ps

*CMOS ACtive Timing μSensor

The CACTUS demonstrator on PCB (chip size : 1 cm x 1 cm)

Cactus (Irfu) : Timeline and results

We started around 2017 after being involved into LF-CPIX and MONOPIX strip detector for ATLAS-ITK outer layers (possible backup solution).

CACTUS was designed in parallel, reusing blocks and concepts from LF-CPIX and MONOPIX, adding optimizations towards timing performance

At that time, 2 possible applications for sub-100ps timing detectors:

- ATLAS High η muon tagger (upstream forward calorimeter)
- HGTD in front of ATLAS-LAr

First try with CACTUS:

- Yield correct, High break down voltage, homogenous charge collection, deep depletion depth
- Main problem with CACTUS: underestimation of parasitic capacitance → bad S/N
- -Also coupling between analogic and digital part \rightarrow ringing of digital pulse
- \rightarrow modest timing performance ~500ps

https://arxiv.org/abs/2003.04102

 \rightarrow Version 2 of CACTUS called Mini-Cactus

MiniCACTUS Sensor Chip

≈2 5 mm 8 BBB 3 ഹ m 6 en in serving and an en term Layout of MiniCACTUS

Block diagram of the MiniCACTUS chip (not to scale) Pixel Flavors : Pixels 3 & 7 : 2 Pixels 2, 4, 6 &

Pixels 3 & 7 : 1 mm x 1 mm baseline pixels
Pixels 2, 4, 6 & 8 : 0.5 mm x 1 mm pixels
Pixel 8 : 0.5 mm x 1 mm pixel with in-pixel AC coupling capacitor (20pF)
Pixels 1 : 50 μm x 50 μm test pixel
Pixels 5 : 50 μm x 150 μm test pixel

- MiniCACTUS is a smaller detector prototype designed in order to address the *low S/N issue* observed on previous CACTUS large size demonstrator
- Main change in MiniCACTUS: FE integrated at column level, pixels mostly passive
- On-chip Slow Control, DACs, bias circuitry
- 2 discrimated digital (LVDS) and 2 analog monitoring (*slower than CSA output*) outputs for 2 columns
- 2 small pixels implemented as test structures to study charge collection (*FEs not power optimized*)
- Some detectors thinned to 100, 200, 300µm and than post-processed for backside polarization after fabrication

BREAKDOWN VOLTAGE MEASUREMENTS

CACTUS **MiniCACTUS** Substrate current (µA) CACTUS B#5 -0-10 CACTUS B#3 CACTUS B#6 200 µm -0-Chip#8 (100 μ) 8 Chip#5 (200 μ) Chip#7 (200 µ) з 6 4 Ver. B Ver. A 2 0 -400 -350 -300 -250-200 -150 -100 100 200 300 400 500

- Found similar BV for thinned and unthinned chips
- Version B BV is around 350 V.

- Same LF15A process used for both chips
- Same guard rings used for both chips (MiniCACTUS uses
 Ver. B CACTUS rings)
- Same postprocessing for both chips (as far as we know)

The tested two 200 μ chips break down above 500 V !

Not clear why there is such a difference between 200 μ chips and other thicknesses : post-processing details ? Specific wafer ?

ON-CHIP FRONT-END

Breakdown voltage from 300 V to 500 V Variations likely due to posprocessing

IN-LAB TESTS (injection pulse, Gamma-ray sources)

⁵⁵Fe — MiniCactus 5 , Pixel 18

INTERNAL ANALOG PULSESHAPE RECONSTRUCTION FROM DIGITAL OUTPUT

 Charge Injection → Vpeak AmpOut ~ 150 mV

(MPV of MIPs for a 200 μm thick sensor)

- Input injection pulse Rise/Fall Time = 1.8 ns
- FE Internal Pulse Rise Time \approx 1.7 ns

- Charge Injection \rightarrow Vpeak AmpOut ~ 150 mV
- Input Rise/Fall Time = 5.0 ns
- Pulse Rise Time ≈ 4.8 ns
- Jitter : 64.9 ps

s (not realistic case) \rightarrow The FE follows well a 1.8 ns falling edge digital injection pulse

INTERNAL ANALOG PULSESHAPE RECONSTRUCTION ATTEMPT

Testbeam data

- Internal pulseshape reconstruction not very precise, but enough to get an idea of the shape and the rise time
- Rise time is of the order of 4-5 ns for 200 μ m and 100 μ m \rightarrow need to reoptimize front-end for future iterations
- The unthinned 700 μm chip are clearly slower \rightarrow post-processing is definitely needed !
- Rise time decreases somewhat with HV (related to drift velocity increase)
- With these results, for a given thickness and bias voltage, the noise of the FE seems to be the limiting factor of the current timing resolution

IN-LAB ⁹⁰Sr TEST SET-UP

<u>Used for</u>:

- First test and debug
- Calibration

parameter optimisation
 studies looking for relative
 performance improvements

TESTBENCH OF MINICACTUS IN TESTBEAM

TESTBENCH OF MINICACTUS IN TESTBEAM

Time reference RD-51 MCPs (resolution < 10 ps)

TYPICAL WAVEFORMS OBSERVED DURING TESTBEAM

 \rightarrow Ringing on **Digital Output** due to coupling from the digital buffers (known problem from in-lab tests, negative impact on TW corrections from digital ToT)

DATA ANALYSIS PROCEDURE

Chip#5, pixel 8, 0.5 x 1 mm², 200 µm, -280V (Back-side pol.)

- Measured timing resolution (-280 V) : **74.4 ps** (MCP resolution negligible)
- Worse timing resolution measured with 100 μm sensor (*lower S/N* and *ringing from digital*)
- Small pixels have worse performance, probably due to charge sharing effects (*pixel 5 tested in testbeam*)

IN-LAB TIMING MEASUREMENTS WITH PMT AND ⁹⁰Sr SOURCE

Chip#6, pixel 8, 0.5 x 1 mm², 200 μm

Bias Voltage (V)

 → In-lab measurements with 90Sr betas
 allowed to predict actual performance with MIPs

Have to select MIP-like betas by cutting out low energy deposits in PMT

Pixel position scan at 20 keV with photons (data taken at Synchrotron Soleil)

Used a pencil beam (50 microns by 50 microns) to scan pixel surface

No non-uniformity found

Thanks to F. Orsini and A. Dawiec for the Beam line time and help with data taking I

Х

MiniCACTUS_V2 Sensor Chip

Irfu : Yavuz Degerli, Fabrice Guilloux, Jean-Pierre Meyer, Philippe Schwemling IFAE : Raimon Casanova, Yujin Gan, Sebastian Grinstein

- ~ 2 times larger than MiniCACTUS
- 0.5 mm x 1 mm (baseline), 1 mm x 1 mm and
 0.5 mm x 0.5 mm diodes
- 50 μm x 150 μm and 2 50 μm x 50 μm small test diodes
- 3 different preamps
- New multistage discriminator with programmable hysteresis
- Improved layout for better mixed-signal coupling rejection
- CEA-IRFU & IFAE-Barcelona coll.
- Submitted in May 2023, waiting for samples to
- come back from post-processing

MiniCACTUS_V2 Sensor Chip

- 3 different preamps implemented in MiniCACTUS_V2
- 2 new preamps (CSA_new and VPA) designed by IFAE-Barcelona for better jitter and reduced ToT

- CSA_new : new charge sensitive preamp
- VPA : new voltage preamp

Monolithic CMOS and DRD3

WG1 research goals <2027				
	Description	┢		
RG 1.1	Spatial resolution: $\leq 3 \ \mu m$ position resolution			
RG 1.2	Timing resolution: towards 20 ps timing precision			
RG 1.3	Readout architectures: towards 100 MHz/cm ² , 1 GHz/cm ² with 3D stacked monolithic sensors, and on-chip reconfig- urability			
RG 1.4	Radiation tolerance: towards $10^{16}~\rm n_{eq}/cm^2$ NIEL and 500 MRad			

X C

- Ambitious research goals
- Agressive timeline

 Quite some technologies/foundry processes under consideration → no clear choice yet, very likely one given technology will not reach all goals

	DRD3	WG1 Monolithic CMOS	Assess technology performance for each H5 – handle technical solution options for strategic programs of LS4 time scale				
	Re	Timeline	2024	2025	2026	2027	
precision common with tolerance DRD7	se	Technologies		For	undry submissions and Milestonses (MS)		
	arch Go	TPSCo (TJ) 65 nm	design MPW1.1	submit MPW1.1mid-2025 design MPW1.2	evaluate MPW1.1 submit MPW1.2 Q4-2026	eusluste MPV/1 2	
	bals	TJ/TSI 180 nm, LFoundry 110/150 nm, IHP 130 nm	design MPW1.1 submit MPW1.1Q4-2024	evaluate MPW1.1 design MPW1.2	submit MPW1.2 Q1-2026		
	RC Posit preci	TPSCo (TJ) 65 nm	electrode size/shape/pitch, process variants 12" ER splits, thin epitaxial layer, stitching optimized for high channel density (low pitch)				
	31 tion	TJ/TSI 180 nm, LFoundry 110/150 nm, IHP 130 nm	electrode size/shape/pitch, wafer type/thickness, process variants 8° ER or MLM splits		MS1 establish position precision versus technology, channel configuration and reader it mode	MS5 handle technical solutions for Vartey Detector (ALICE-3.1.HCb	
	RG Timing pr	TPSCo (TJ) 65 nm	similar to RG1 optimized for fast signal collection speed and high S/N		MS2 establish time precision versus technology, channel	2, Belle-3, CMS/ATLAS) 1) high radiation tolerance/rate technlogies > 65 nm 2) high chapped depring globing	
	2 ecision	TJ/TSI 180 nm, LFoundry 110/150 nm, IHP 130 nm	similar to RG1 optimized for fast signal collection speed and high S/N including gain layer option		MS3 establish performance of readout variants for power	TPSCo 65 nm MS6	
	RG Read archited common DRE	TPSCo (TJ) 65 nm	digital/binary, synchronous/asynchronous optimised to features of RG1 and RG2 at medium rates power distribution and control in large size stitched matrix		MS4 establish radiation tolerance provide guidlenies for choice of substrates	Central Tracking (ALICE-3, EIC, LHCb-2, Belle-3), Timing Layers (ALICE-3, ATLAS, CMS) with stitching TPSCo 65 nm	
	3 Jout Sture 1 with 07	TJ/TSI 180 nm, LFoundry 110/150 nm, IHP 130 nm	digital/binary, synchronous/asynchronous optimised to features of RG1 and RG2 at medium and high rates		select/merge MPW1.1features add new technology features	MS7 handle technical solutions for	
	RG Radiat tolera	TPSCo (TJ) 65 nm	process features in splits		submit configurations for Vertex Detector, Central Tracking, Timing Layers, HGCAL	timing, at medium and high rates	
	nce	TJ/TSI 180 nm, LFoundry 110/150 nm, IHP 130 nm	variants of substrates (Cz, epita)	iial), resistivity, p-type and n-type			

Global trade-offs : time resolution is not everything

Name	Sensor	node	Pixel size	Temporal precision [ps]	Power [W/cm ²]	Table from
ETROC	LGAD	65	1.3 x 1.3 mm ²	~ 40	0.3	N. Cartiglia
ALTIROC	LGAD	130	1.3 x 1.3 mm ²	~ 40	0.4	Trade off to
TDCpic	PiN	130	300 x 300 μm²	~ 120	0.45 (matrix) + 2 (periphery	found betw • Space
TIMEPIX4	PIN, 3D	65	55 x 55 μm²	~ 200	0.8	resolutio
TimeSpot1	3D	28	$55 \times 55 \ \mu m^2$	~ 30 ps	5-10	• power
FASTPIX	monolithic	180	20 x 20 μm²	~ 130	40	consum
miniCACTUS	monolithic	150	0.5 x 1 mm ²	~ -90 -65 ps	0.15 – 0.3	availabil
MonPicoAD	monolithic	130 SiGe	25 x 25 μm²	~ 36	40	
Monolith	LGAD monolithic	130 SiGe	25 x 25 μm²	~ 25	40	50 ps @ 0.1W/cn

rtiglia 2022)

off to be between

- ace solution,
- e resolution
- wer nsumption
- chnology ailability

0.1W/cm2

Conclusions and perspectives

Short term : evaluation of 10¹⁵ 1 MeV neq/cm² MiniCactus v1 : 10¹⁴ (1 MeV neq/cm² (not shown here) have perf comparable to unirradiated chips if cooled at -15°C

- In-lab and test-beam tests of MiniCactus v2. Hope to correct analog/digital coupling and have improved timing performance !
- Medium term : investigate monolithic pixels with integrated gain layer.
- Possible with standard LF15A process, submission being prepared
 - Intrinsic gain would allow better timing performance and possibility of thinner sensors
- In general, a lot of activity underway on monolithic CMOS timing oriented sensor
- developments
 - Many technologies are being evaluated, see DRD3 WGs and WPs
- Present performance not far from what could be needed for a timing layer or a TOF detector
- Integration in an actual experiment needs :
 - Careful trade off evaluation between timing performance, space resolution, power dissipation
 - A lot of work to integrate digital data processing in a fully monolithic design
- Publications :
 - MiniCACTUS: A 65 ps Time Resolution Depleted Monolithic CMOS Sensor (arXiv:2309.08439, NSS 2022 conference)
 - MiniCACTUS: Sub-100 ps timing with depleted MAPS, Nucl.Instrum.Meth.A 1039 (2022) 167022, VCI 2022 conference)
 - CACTUS: A depleted monolithic active timing sensor using a CMOS radiation hard technology (arXiv:2003.04102, JINST 15 (2020) 06, P06011)

Backup

Development of cold box setup

Initial After one status month of continuous operation at -15°C[•]

- Mostly intended to test irradiated samples
 - We have 100 μ and 300 μ irradiated at 1014, 1015, 1016 1 MeV neq/cm²

irfu

cea

- MiniCactus testbench (DUT board, GPAC, Raspio) in insulating foam box (plus feedthroughs for power and cooling)
 - Copper plate with a cooling pipe welded to it plus copper fingers bring cold surface as close as possible to DUT
- Monitoring of temperature and moisture level at various places in cold box
- No moisture control, we just try to minimise water input
- LAUDA chiller, min temp -30°C at chiller output
- Kapton windows allow use of 90Sr beta source (has to stay outside of cold box for safety/regulatory reasons)

IV curves vs temperature (Unirradiated DUT. 300 µ thick)

(µA)

Main conclusion :

 Need to run avoiding temperature range between 7.5°C and -1°C measured on DUT

Below -1°C all water is frozen \rightarrow OK Above 7.5°C all water is vapour \rightarrow OK

IV measurement done routinely and automatically through remote control and monitoring of HV PS (Keithley sourcemeter)

IV curves of irradiated MiniCactus v1

As expected, BV increases with total dose Cooling is essential to bring leakage current to manageable values

irfu

cea

PMT and MiniCactus data 10¹⁴ 1 MeV neq irradiated DUT, 300 µ thick, 200V

irfu

PMT and MiniCactus data 10¹⁴ 1 MeV neq irradiated DUT, 300 µ thick, 200 V

DT PMT1-MIN1 (ps)

irfu

cea

LF15A radiation hardness

0 Mrad @Room Temp 149 Mrad @Room Temp 149 Mrad @Low Temp -15°C

[[]I. Mandic et al. NIM A 903, 2018]

- → Radiation tests at CERN-SPS with **proton** beam on **LF-CPIX** chip (**CPPM**)
- \rightarrow 14% increase of noise after irradiation with cooling

Comparison of time resolution of unirradiated and 10¹⁴ 1 MeV neq chips

Senso	r HV bias (V)	Conditions	Temp. (°C)	Time res. (ps)	MPV (mV)
Unirradiated 300	u 400	testbeam, MCPMT time reference	room	78.97 ± 1.36	201.9 ± 0.5
Unirradiated 300	u 400	90Sr, PMT time reference*	room	104.5 ± 2.30	195.7 ± 2.3
Unirradiated 300	u 280	testbeam, MCPMT time reference	room	89.11 ± 1.56	200.9 ± 0.5
Irradiated 300 u	280	90 Sr, PMT time reference	20	108.2 ± 3.2 (PMT subt.)	108.2 ± 3.2
Irradiated 300	u 320	90 Sr, PMT time reference	20	132.9 ± 5.0 (PMT subt.)	113.5 ± 0.8
Irradiated 300	u 320	90 Sr, PMT time reference	-15	87.9 ± 4.7 (PMT subt.)	132.7 ± 0.6

Irradiation at 10¹⁴ n_{eq} worsens time resolution by 18 % w.r.t. unirradiated at 20 °C

Cooling at -15°C brings time resolution more or less back to unirradiated performance (less dark current fluctuations)

*PMT resolution for 90 Sr betas estimated to be 71.3 ps ± 1.7 ps

ATTRACT prototype

100µm pitch hexagonal pixels - 25 µm depletion

Control of the second s

UNDER TEST HERE

Analog Channels:

HBT preamp + two HBT Emitter Followers to 500Ω Resistance on pad.

UNIVERSITÉ FACU De GENÈVE Partie

FACULTY OF SCIENCE Department of Nuclear and Particle Physics

MPW submission in 2019 funded by H2020

MONOLITH

24.02.22

Leading-edge technology: IHP SG13G2

130 nm process featuring SiGe HBT with

- Transistor transition frequency: *ft* = 0. 3 *THz*
- DC Current gain: $\beta = 900$
- Delay gate: 1.8 ps

innovations for high performance microelectronics

Leibniz-Institut für innovative Mikroelektronik

FACULTY OF SCIENCE Department of Nuclear and Particle Physics

ATTRACT prototype – Time Stamping

• 57 ps after 10^{16} 1 MeV neq/cm2 $\sigma_t = \frac{\sigma_{TOA0-TOA1}}{\sqrt{2}} = (36.4 \pm 0.8)$ ps without gain structure • can be brought back to 40 ps, with HV and LVPS increase : Arxiv : 2310.19398 \rightarrow mass scale production ???) MONOLITHIC

Fastpix (CERN) : sub-ns timing with TJ180

Figure 2. FASTPIX layout (5.3 mm \times 4.1 mm) with details of the 20 µm pitch hexagonal grid zoom on 7 pixels.

Figure 2. Wafer production process variants for FASTPIX represented by schematic cross-sections of the pixel unit cells, showing a cut perpendicular to the sensor surface. The standard 180 nm CMOS imaging process (left) and the modified process variant (right) with added low-dose n-type implant and optimizations such as a gap in the n-implant, retracted deep p-well and additional extra-deep p-well implant.

Figure 8. Number of pixel hits per event for the 10 µm (a) and 20 µm (b) pitch matrix.

Figure 14. Seed-pixel time residuals after timewalk correction for the inner region of the $10 \,\mu m$ (a) and $20 \,\mu m$ (b) pitch matrix.

Plan to port and test the concept on TPSCo 65 technology, but small pixels \rightarrow beware of drift field inhomogeneity !

GUARD-RINGS OF LF-MONOPIX1

[M. Barbero et al. JINST 15, 2020]

ELECTRIC FIELDS

Backside versus top biasing \rightarrow Need backside polarization to ensure best charge collection and signal shape uniformity!

241Am Amplitude Spectrum (pixel 5, 50 μm x 150 μm)

response can be studied

Setup pictures

Beam direction

MiniCactus chip

Data acquired with LeCroy oscilloscope, at 10 GSPS, 8 bits

Typical waveforms

Energy spectra at Soleil

Fitted AmpOut1 (mV)

Parasitic energy peaks observed in MiniCactus

Their existence is confirmed by a dedicated camera installed on the beam line

Most probably due to fluorescence of PCB material (close to MiniCactus)

Camera sees different amplitude due to solid angle effect

Calibration comparison between Soleil data and 241Am X-ray lines

200 μ chip, 241Am data (200 V), px 8 300 μ chip, Soleil data (400 V), px 8 300 μ chip, 241Am (300 V)

Time resolution with photons

Time resolution worse for photons than for MIPs, at similar S/N

40 keV photon (\approx 200 ps) releases similar charge as a MIP (\approx 65 ps)

Interpreted as due to the different structure of energy deposits :

Pointlike for photons, along a line for MIPs