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Introduction

LHC upgrade during the long shutdown starting 2026 leading to the HL-LHC
o Increase the instantaneous luminosity by a factor 5 to 7 with respect to the LHC design value
o 140 to 200 simultaneous proton-proton collisions (pileup)

ATLAS will be upgraded to cope with the HL-LHC conditions
o Increase the level 1 trigger frequency from 100 kHz to 1 MHz

> New readout electronics for the liquid argon calorimeter
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The ATLAS Liquid Argon Calorimeter

e Measures the energy of electromagnetically interacting particles mainly electrons and photons
e Trigger capabilities at the first level of triggering (implemented in hardware)
o Fast processing of the data needed (at 40 MHz)
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e Electronic signal amplitude proportional
to the deposited energy in the calorimeter

e Shaped and sampled at 40 MHz
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LAr Phase-II Upgrade
- ]

e Full electronics of the readout path will be exchanged
o New on-detector electronics that will digitize the signal at 40 MHz and send it to the backend

o New off-detector electronics to compute the energy at 40 MHz
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https://cds.cern.ch/record/2285584/

LASP Firmware

|
e [ ASP board containing 2 processing units based on INTEL FPGAs
o Demonstrator board available with Stratix 10 FPGAs
m Baseline for the firmware development shown in this talk
o  Final board will be equipped with Agilex FPGAs
e One FPGA should process 384 channels
o  About 125 ns allocated latency for energy computation
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Energy reconstruction

e
Legacy energy reconstruction using an optimal filtering

E, [GeV]

algorithm with maximum finder (OFMax)

o  Optimal filtering to reconstruct pulse amplitude

o Max finder to determine the correct time
e Not robust for distorted shapes due to pileup

Neural networks promising candidate to recover

performance in high pileup conditions
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CNNs and RNNs considered
Only RNNs covered in this talk
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e Sequence of RNN cells each taking as input an
ADC sample at a given BCID

o 4 samples on the pulse

o N samples prior to the pulse to correct for pileup
e Two general parameters control network size

o Sequence length (number of samples) g = o y

© NN units (internal dimension of the NN cells) 7

e Several cell structures tested *{ M » ’ _'%'
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https://link.springer.com/article/10.1007/s41781-021-00066-y

Performance as Function of Time Gap

Lauri Laatu, PhD thesis (2023)

OFMAX

e Energy resolution as function of the time gap between 58
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https://cds.cern.ch/record/2875588?ln=en

Lauri Laatu, PhD thesis (2023)

Optimisation of computational resources

| |
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Dense layer : MAC o< SXN

e Long sequences needed to efficiently correct for pileup
o Significant computational resources for RNN cells
e Replace RNN cells in the past by a dense layer
o Dense to correct to pileup, RNN to compute the amplitude
o Reduce the number of needed multiplications by a factor 4
m For a network with dimension 30 and sequence length 20
o No effect on performance
e Reduce number of bits needed for arithmetic computation
o Replace floating point with fixed point operation
o Train the network directly with fixed point (QAT)
o Quantization aware training (QAT) can reduce the number of

needed bits by a factor 2

RMSE [GeV]

RNN layers : MAC oc SXN?

Simulation of the energie resolution in
firmware as function of the number of bits
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https://cds.cern.ch/record/2875588?ln=en

Lauri Laatu, PhD thesis (2023)

RNN performance (summary)
- ]

e Small RNNs (sequence length of 5 samples) can outperform OFMax overall
o Butnot in all regions
o Larger networks needed

e Several optimisation carried out to improve the performance
o Keeping the network suitable for FPGA processing
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https://cds.cern.ch/record/2875588?ln=en

Firmware Implementation
|

e [mplemented on Stratix 10 FPGA °

O

O

Reference 1SG280HU1F50E2VG
Implementation on Agilex ongoing

e Preliminary implementation in HLS shows
that LSTM is too large to fit

e Focus on Vanilla RNN

e Start with small RNN
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8 units and sequence length of 5

89 parameters

368 multiplications/accumulations (MAC)

needed /

LASP demonstrator board
Produced at CPPM

Challenges:
o 384 channels per FPGA

o 125 ns latency
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Implementation in HLS

I
e Optimisation needed to fit RNNs within resource and latency limitations

o Impossible to fit 384 NNs in the FPGAs

o Need to serialize (time multiplexing)

o Need to go to high frequency

e Optimisation of vector/matrix multiplications

o  Most elementary operation inside neural networks
o Naive C++: let HLS do it all
o ACC37: Accumulate (sum) in DSPs by chaining them
o ACCI19: Accumulate in general logic elements (ALUT)
Implementation | ALUTs | FF | DSP
C++ style 709 222 8
@100 MHz { ACC37 116 79 4
ACC19 137 78 4

e Best strategy depends on frequency

o  Accumulate in DSP at low frequency

o  Accumulate in ALUT at high frequency

e (Chaining DSPs at high frequency needs more logic than

what 1s gained by performing sums inside DSPs
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Etienne Fortin, PhD thesis (2022)
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https://www.theses.fr/s207837
https://iopscience.iop.org/article/10.1088/1748-0221/18/05/P05017

JINST 18 (2023) P05017

I m p I e m e n ta ti O n i n V H D L Etienne Fortin. PhD thesis (2022)
7 ~ HLS placement
e HLS does not allow to reach the target frequency and I H—— :

1
LT I
uEY NRURN O

resource usage e

o Increase of the needed logic (per network) and the latency as R o

we add networks to the FPGA | gy |
e Move to VHDL for the final fine tuning i |
e Force placement of the RNN components el

o Allow to better tackle timing violations and improve the i Ll SRR

maximum reachable latency (FMax)
e Use incremental compilation |
o  Freeze networks with no timing violations and recompile only
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VHDL forced placement
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https://www.theses.fr/s207837
https://iopscience.iop.org/article/10.1088/1748-0221/18/05/P05017
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RN N fl rm Wa re re S u Its Nemer Chiedde, PhD thesis (2023)
|

*based on experience with the phase-I upgrade
N networks x ALM DSP FMax latency
multiplexing

Target 384 channels 30%* 70%* Multiplexing x 40 MHz 125 ns

“Naive” HLS 384x1 226% 529% - 322 ns

HLS optimized 37x10 90% 100% 393 MHz 277 ns

VHDL optimized 28x14 18% 66% 561 MHz 116 ns

e HLS allows fast development and optimisation

o However less control on hardware specific implementation § Z: E/.g;jjzs:"@é\//
e VHDL is needed to fine tune the design and fit the LAr 5
requirements :_
e Vanilla RNN firmware produced and fits the requirements z—

—

o Better performance expected with the Agilex FPGA

*..‘.l...,,7.l‘.|_”ﬂ|[|...\‘...l.w | R
—(9.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004

e Firmware tested on the hardware (Stratix 10 DevKit) Erasvae s Gy
o Extracted results match bit-by-bit the firmware simulation

o Firmware resolution < 0.1% as expected from simulation
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https://iopscience.iop.org/article/10.1088/1748-0221/18/05/P05017
https://cds.cern.ch/record/2884186?ln=en

Conclusions
e

e Neural networks can outperform the optimal filtering algorithm for the energy reconstruction
in the ATLAS LAr Calorimeter
o Particularly in the region with overlap between multiple pulses
e Several optimisations carried out to improve the RNN performance while keeping minimal
resource usage
o The improvement on object reconstruction (electrons, photons) is ongoing

e Small Vanilla RNN implemented on Stratix 10 FPGAs

e HLS implementation allows very fast prototyping
o  Added support for both Vanilla RNNs and LSTMs on INTEL FPGAs to HLS4ML
o HLS design did not fit the stringent resource and latency requirements

e Final implementation done in VHDL
o Fits requirements and successfully tested on hardware
e Next steps is to implement larger networks in Agilex FPGAs
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https://github.com/fastmachinelearning/hls4ml/pull/575
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Energy reconstruction at the HL-LHC

|
e Energy reconstruction using optimal filtering 3 |
o Weighted sum of sampled pulse amplitudes 08 |-
e Increased noise due to increased pileup os |
o Up to a factor of 2 with respect to Run 3
e About 30% degradation in m resolution o4
o Better energy reconstruction algorithms needed 02 b
o Neural networks are obvious candidates
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https://cds.cern.ch/record/2280232/

Rounding vs Truncation

JINST 18 (2023) P05017

Etienne Fortin, PhD thesis (2022)

|
e 18 bits fixed point representation to match
INTEL’s DSP design
. . - :Relu
e Split neural network operations to 3 types I Multiplication l ) _E oot
e Compromise between resolution and resource
P o Internal type (I)
usage and latency | 10 type (D)
o  Truncation of IO and Internal types has small bbbl
impact on energy resolution
o  Weight type rounded in software before loading Weight Input
e Use truncation in the firmware
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