

Generic readout board : PCIe400

European edition of the International Workshop on CEPC 9th April 2024 – Marseille

Julien Langouët (CPPM) on behalf of the R&T PCIe400 team CPPM, IJClab, LP2IB, LAPP, LPCC, LHCb Online, Subatech

Outline

Context

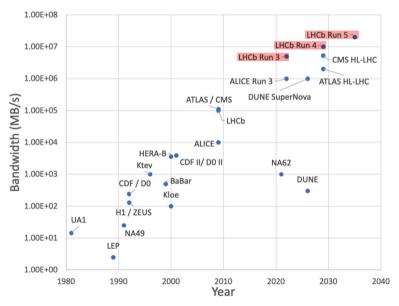
PCIe400 overview

Hardware technical challenges

- Cooling the board
- Power distribution
- Signal integrity
- Routing

Synthesis

LHCb data processing system


With increasing luminosity classical trigger strategies show low efficiencies especially for LHCb physics studies

- Impossible to use a subset of detector information to select interesting event for offline analysis
- All data must be readout, reconstructed and selected at LHC full collision rate

LHCb data processing is one of the biggest challenge in HEP

Run5 / Upgrade II requirements vs Run 3 / Upgrade I

- **4x number of front-end links** $11k \rightarrow 40k$
- 2x bandwidth of front-end serial links 5 Gbps → 10 Gbps
- **5x data throughput** 40 Tbps \rightarrow 200 Tbps

Data processing rates history in HEP experiments A. Cerri

Requirement of data acquisition system

Common generic readout DAQ card interfacing custom protocol from front-end to commercial protocol back-end system

Intermediate enhancement in LS3 [2026 - 2028] of some sub-detectors

Opportunity to develop a new generation of board

- Generic readout DAQ card interfacing up to 48 front-end links to 1 commercial protocol link PCIe Gen5 with a **bandwidth x4**
- **Explore** experimental path to prepare Upgrade II
 - Integrate a network interface such as 400Gbps (RoCE) RDMA over Converged Ethernet in the FPGA
 - Integrate complex data processing such as tracks primitive reconstruction
- Distribute LHC master clock with tighter timing requirement : reproductive phase determinism *O*(10)ps RMS

LHCb TDR 25

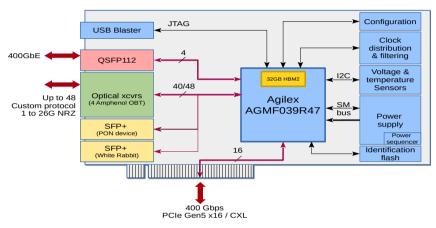
PCIe400 overview

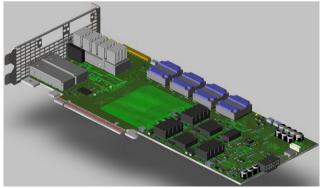
Designed around latest Intel/altera FPGA Agilex 7 M-series

• 4 Million of logic elements and <1 GHz internal frequency

32GB integrated High Bandwidth Memory (HBM)

Up to 5.2 Tbps exchange between Fabric and HBM


Hard processor inside Arm Cortex 4 cores @ 1.2Ghz


High bandwidth I/O

- 48 bidirectional links with front-end at up to 25Gbps
- 2 SFP+ for Time Fast Control system
- PCIe Gen 5 x16 with 400 Gbps output bandwidth Compatible with Compute Express Link for cache coherent transactions
- 4x bidirectional 112 Gbps for network interface

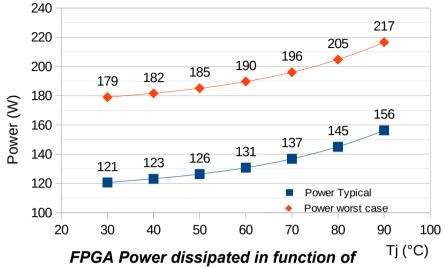
Time distribution

High precision PLL with <100 fs jitter intrinsic</p>

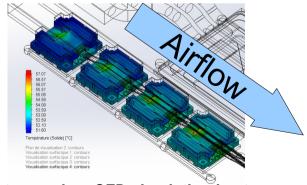
3D rendered view of PCIe400

Cooling the board

Power dissipation


FPGA total dissipated power (TDP)

- Estimation at early stage with limited gateware inputs from developers
 - \rightarrow risk of over-designing cooling solution
- Estimated between 120W to 230W
- Need for high performance cooling solution


Opto-electronic transceiver

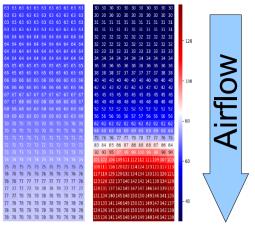
Estimated as constant 30W

High constraints on placement due to form factor

junction temperature

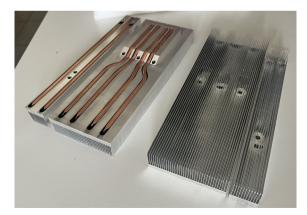
Opto-electronic transceiver CFD simulation heatmap

Cooling solution


Air cooling solution privileged for more flexibility

- Vapor chamber show high performance for our application but high NRE cost
- Instead heat-pipe heat-sink with skived fins outsourced design

Nominal performance validated in simulation @ 38°C ambient and 5m/s airflow


- FPGA is maintained at 85°C with 160W
- Opto-electronic transceivers are maintained <60°C at 30W
- QSFP112 is maintained at 75°C with 12W dissipation
- SFP+ are maintained <60°C</p>

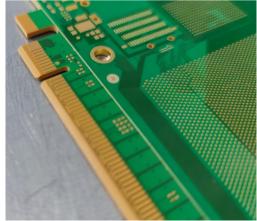
Final cooling solution will be decided after tests on prototype

Vapor chamber Solid metal

Heat spread on heatsink base comparsion

Prototype heat-sinks

Power distribution


Power integrity

Power dissipation within power plane

Power dissipated	70µm	35µm	Δ
Layer TOP	9.6W	11.0W	+14 %
Layer 9	4.9W	6.8W	+38 %
TOTAL	14.5W	17.8W	+23 %

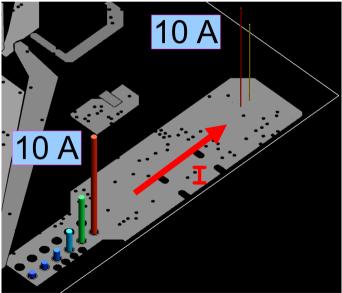
PCB T° rise 17 30

Illustration of a PCIe PCB thinner on connector

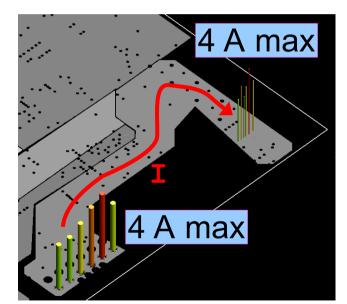
22 power rails with high accuracy in voltage and high current up to 100A

Use 70µm thick copper planes to reduce voltage drop and power dissipation in planes

18 layers PCB restricted to 1.57mm in thickness due to PCIe edge connector specification


Design of a PCB thinner on connector zone

Power integrity simulations


Optimize power plane geometry

- Reduce high current in vias
- Uniformize current in power planes to reduce heat dissipation in the PCB

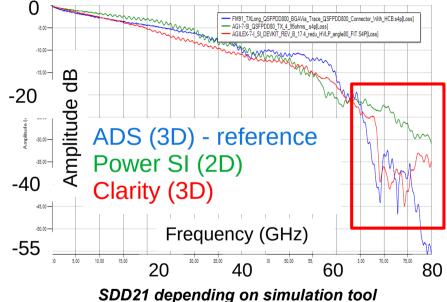
Example of current in vias optimization on 12V Auxiliary power plane at 18 A

Current in vias Original power plane design

Current in vias updated power plane design

Julien Langouët - CEPC workshop - Marseille

Signal integrity

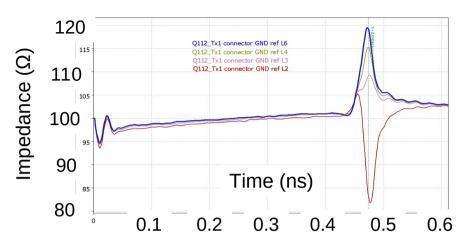

Simulation tools

108 differential pairs at up to 112Gbps PAM4

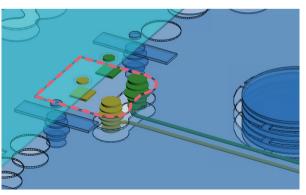
- 84GHz bandwidth
- Need to take into consideration vias 3D geometry

Simulation tools take a lot of computational resources

 S-parameter extraction of a single differential pair takes ~8h on a 48 cores @3.2GHz machine


Simulation performed

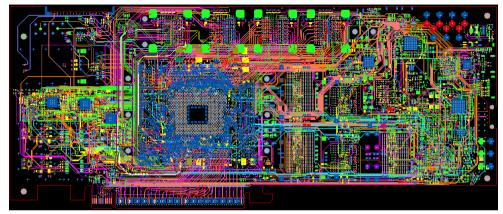
Several iterations are required to reach specification


112Gbps traces require controlled impedance with
7% tolerance while standard is 10%

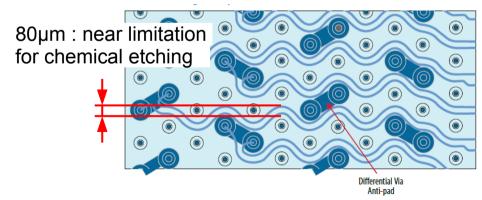
With 84GHz bandwidth, small detail can lead to large impedance mismatch

- Fanout
- Vias structures for current return path
- Openings on adjacent planes
- Openings of planes under connector pads
- Trace length matching

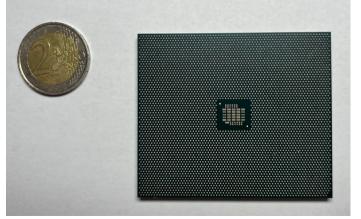
112Gbps simulated TDR showing impedance mismatch depending on distance to GND reference plane


Example of connector opening on L2

Routing


Very dense routing

- 270 x 110 mm PCB (GPGPU form factor)
- 2500 components on-board


4500 pins FPGA with 0.9mm pitch with hexadecimal structure

PCIe400 Layout illustration

Hexadecimal pin breakout

FPGA pin photo

Julien Langouët - CEPC workshop - Marseille

Synthesis

PCIe400 is a R&D development pursued by IN2P3

- 400Gbit/s output bandwidth per board with up to 48 bidirectional interfaces for front-end
- Baseline solution for LHCb future upgrade
- Generic design that can suit several application (Belle II, Alice, CTA)

It also paves ways to explore future DAQ topologies

- 400Gbit/s network interface allowing switch based interconnections or process pipelining between boards
- Integration of a white rabbit node for future generation of precise clock distribution

Hardware design show many technical challenges in cooling, power distribution and signal integrity

Several technical challenges yet to overcome with modern SoC FPGA

- Phase deterministic clock distribution
 - ECFA DRD7 7.3c Timing distribution techniques
- Optimizing input data bandwidth to efficiently use FPGA ressources
 - 7.5b 100GbE from front-end to back-end

First prototype boards to be tested in June 2024