Overview of Linear Collider Projects

Physics, Technologies, Resources, **Open Questions & Challenges**

2024 European Edition of the International Workshop on the **Circular Electron-Positron Collider**

Jenny List (DESY) European CEPC Workshop 8-11 April 2024 Marseille

CLUSTER OF EXCELLENCE HELMHOLTZ **QUANTUM UNIVERSE**

Outline

Today's menu

- Project Overview & Updates
 - a tour across ILC, CLIC, C3 & HAL
- Why a Linear Collider?
 - physics, physics, physics...
- Sustainability
 - construction & operation
- Instead of conclusions....

Recent workshops

Much more going on than can possibly be covered in a 25' talk

- Linear Collider Workshop 2023
 - 15-19 May 2023, SLAC, US
 - <u>https://indico.slac.stanford.edu/event/7467/</u>
- Special Workshops
 - Cool Copper Collider 12 -13 Feb, SLAC, <u>https://indico.slac.stanford.edu/event/8577</u>
 - HALHF 4-5 April, Oslo, <u>https://indico.cern.ch/event/1370201/</u>

Recent workshops

Much more going on than can possibly be covered in a 25' talk

- Linear Collider Workshop 2023
 - 15-19 May 2023, SLAC, US
 - <u>https://indico.slac.stanford.edu/event/7467/</u>
- Special Workshops
 - Cool Copper Collider 12 -13 Feb, SLAC, <u>https://indico.slac.stanford.edu/event/8577</u>
 - HALHF 4-5 April, Oslo, https://indico.cern.ch/event/1370201/

Upcoming: LCWS 2024, July 8-11 in Tokyo https://agenda.linearcollider.org/event/ <u>10134</u>

Project Overview & Updates

The ILC250 accelerator facility

Item	Parameters
C.M. Energy	250 GeV
Length	20km
Luminosity	1.35 x10 ³⁴ cm ⁻² s ⁻¹
Repetition	5 Hz
Beam Pulse Period	0.73 ms
Beam Current	5.8 mA (in pulse)
Beam size (y) at FF	7.7 nm@250GeV
SRF Cavity G. Q ₀	31.5 MV/m (35 MV/m) Q ₀ = 1x10 ¹⁰

Parameters and plans for luminosity and energy upgrades are available, interesting and relevant SCRF R&D also for such upgrades (<u>Snowmass input</u>)

Key systems and challenges

The ILC is a very mature design, with a comprehensive TDR

Next steps involve technical developments and industrial prototyping with final specs as needed for an Engineering Design and in preparation of pre-series and construction

Creating particles

Sources

Damping ring

- polarized elections/positrons
- High quality beam
 - low emittance beams
- Acceleration
 - superconducting radio frequency (SRF)
- Collide them

Final focus

Main linac

- nano-meter beams
- Go to

Beam dumps

EU.XFEL:

Largest deployment of SCRF technology

- 100 cryomodules
- 800 cavities
- 17.5 GeV
- First beams 2016

The ILC IDT organization – initiated at the ICFA meeting at SLAC February 2020

2020-21: The IDT – created by ICFA and hosted by KEK – was set up to move ILC towards construction. The worldwide structure of the WGs: <u>https://linearcollider.org/team/</u> A set of key activities were identified in a Preparation Phase Programme.

2022-23: A subset of the technical activities of the full ILC preparation phase programme have been identified as critical (next slide). These are being addresses by a ~4 year programme called ITN – the ILC Technology Network. Moving forward with this work is being supported by the MEXT (ministry) providing crucial increased funding.

As of today: With funding from 1.4.2023 ITN is now starting. An agreement KEK and CERN and several European lab activities have been/are being set up. In the US the P5 process is ongoing, the hope is that ITN planning and interests can turn into important ITN involvements in due time.

The ITN

Promoting the technological development of the International Linear Collider: Twenty-eight research institutes participated in the ITN Information Meeting

WPP	1	Cavity production
WPP	2	CM design
WPP	3	Crab cavity
WPP	4	E- source
WPP	6	Undulator target
WPP	7	Undulator focusing
WPP	8	E-driven target
WPP	9	E-driven focusing
WPP	10	E-driven capture
WPP	11	Target replacement
WPP	12	DR System design
WPP	14	DR Injection/extraction
WPP	15	Final focus
WPP	16	Final doublet
WPP	17	Main dump

Building the ITN activities:

- Planning in the IDT WG2 significant interests and expertise already represented
- Information meeting at CERN 16-17.10 jointly organized by KEK and the IDT
- Interest matrix for the ITN workpackages, being consolidated
- The next step: Further technical discussion to define deliverables, followed by agreement who among the laboratories will deliver what

SRF	WPP	1	Cavity production	\checkmark		\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	
	WPP	2	CM design	\checkmark				\checkmark				\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark		\checkmark	\checkmark	
	WPP	3	Crab cavity			\checkmark	\checkmark							\checkmark					\checkmark			\checkmark	\checkmark		\checkmark	\checkmark
Sources	WPP	4	E-source			\checkmark						\checkmark							\checkmark		\checkmark			\checkmark		
	WPP	6	Undulator target				\checkmark												\checkmark	\checkmark			\checkmark			
	WPP	7	Undulator focusing				\checkmark												\checkmark	\checkmark			\checkmark			
	WPP	8	E-driven target	\checkmark		\checkmark												\checkmark	\checkmark							
	WPP	9	E-driven focusing	\checkmark														\checkmark	\checkmark							
	WPP	10	E-driven capture	\checkmark															\checkmark					\checkmark		
	WPP	11	Target replacement	\checkmark																						
Nano-beams	WPP	12	DR System design	\checkmark	\checkmark				\checkmark	\checkmark		\checkmark							\checkmark				\checkmark	\checkmark		
	WPP	14	DR Injection/extraction	\checkmark					\checkmark										\checkmark				\checkmark	\checkmark		
	WPP	15	Final focus	\checkmark			\checkmark		\checkmark		\checkmark							\checkmark			\checkmark			\checkmark		
	WPP	16	Final doublet	\checkmark	\checkmark													\checkmark								
	WPP	17	Main dump	\checkmark			\checkmark					\checkmark														

The Compact Linear Collider (CLIC)

- **Timeline:** Electron-positron linear collider at CERN for the era beyond HL-LHC
- Compact: Novel and unique two-beam accelerating technique with high-gradient room temperature RF cavities (~20'500 structures at 380 GeV), ~11km in its initial phase
- Expandable: Staged programme with collision energies from 380 GeV (Higgs/top) up to 3 TeV (Energy Frontier)
- CDR in 2012 with focus on 3 TeV. Updated project overview documents in 2018 (Project Implementation Plan) with focus 380 GeV for Higgs and top.

11

On-going CLIC studies towards next ESPP update

Project Readiness Report as a step toward a TDR Assuming ESPP in ~ 2026, Project Approval ~ 2028, Project (tunnel) construction can start in ~ 2030.

see later)

micro Perveance (uA/V15

CERN

8 km footprint for 250/550 GeV CoM \Rightarrow 70/120 MeV/m Large portions of accelerator complex compatible between LC technologies

- Beam delivery / IP modified from ILC (1.5 km for 550 GeV CoM), compatible w/ ILC-like detector
- Damping rings and injectors to be optimized with CLIC as baseline

Snowmass paper: https://arxiv.org/pdf/2203.07646.pdf

	Collider	C^3	C^3
ameters	CM Energy [GeV]	250	550
	Luminosity $[x10^{34}]$	1.3	2.4
	Gradient $[MeV/m]$	70	120
	Effective Gradient [MeV/m]	63	108
	Length [km]	8	8
ar	Num. Bunches per Train	133	75
C ³ F	Train Rep. Rate [Hz]	120	120
	Bunch Spacing [ns]	5.26	3.5
	Bunch Charge [nC]	1	1
	Crossing Angle [rad]	0.014	0.014
	Site Power [MW]	$\sim \! 150$	$\sim \!\! 175$
	Design Maturity	pre-CDR	pre-CDR

Cryo-Copper: Enabling High-Gradient Operation

Cryogenic temperature (LN₂ at 80k) elevates gradient performance

- Increased material strength is key factor
- Increase electrical conductivity reduces pulsed heating in the material

C³ Main Linac Cryomodule 9 m (600 MeV/ 1 GeV)

C³ Prototype One Meter Structure

High power Test at Radiabeam

HALHF: A Hybrid, Asymmetric, Linear Higgs Factory

>Overall length: ~3.3 km ⇒ fits in ~any major particle-physics lab

>Length dominated by e- beam-delivery system

New concept, aiming for pre-CDR end 2024:

- 500 GeV for electrons with plasma acceleration
- 31 GeV positrons with RF based linac, used also to provide electron drivebeam for the plasma acceleration
- Reach 250 GeV collision energy, luminosity 10³⁴
- Paper: <u>https://arxiv.org/pdf/2303.10150.pdf</u>

Asymmetric technologies, energies and bunch charges

Small footprint, lower cost (half again?)

Several key plasma acc. challenges:

Multi-staging, emittances, energy spread, stabilities, spin polarisation preservation, efficiencies, rep rate, plasma cell cooling and more

Conventional beam(s) challenges:

Positron production, damping rings, RF linac, beam delivery system

Experimental challenges with asymmetric beams

Why a linear collider?

Circular or Linear Collider?

Each have their advantages

Circular e+e- Colliders

- FCCee, CEPC
- length 250 GeV: 90...100km
- high luminosity & power efficiency at low energies
- multiple interaction regions
- very clean: little beamstrahlung etc

Linear Colliders

ILC, CLIC, C^3 , ...

- length 250 GeV: 4...11...20 km
- high luminosity & power efficiency at **high** energies
- longitudinally spin-polarised beam(s)

Circular or Linear Collider?

Each have their advantages

Circular e+e- Colliders

- FCCee, CEPC
- length 250 GeV: 90...100km
- high luminosity & power efficiency at low energies
- multiple interaction regions
- very clean: little beamstrahlung etc

Linear Colliders

ILC, CLIC, C^3 , ...

- length 250 GeV: 4...11...20 km
- high luminosity & power efficiency at high energies
- Iongitudinally spin-polarised beam(s)

Long-term vision: re-use of tunnel for pp collider

 technical and financial feasibility of required magnets still a challenge

Long-term upgrades: energy extendability

- same technology: by increasing length
- or by replacing accelerating structures with advanced technologies
 - RF cavities with high gradient
 - plasma acceleration ?

Luminosity vs Energy - a long debate...

Reminder: accelerated charges radiate

- Synchrotron radiation ~ operation cost:
 - ΔE ~ (E⁴ / m⁴R) per turn => 2 GeV at LEP2
- Cost in high-energy limit:
 - circular: \$\$ ~ a R + b ΔE ~ a R + b (E⁴ / m⁴R)
 optimize => R ~ E² => \$\$ ~ E²
 - linear : \$\$ ~ L, with L ~ E => **\$\$ ~** E

LIMITATIONS ON PERFORMANCE OF e⁺e⁻ STORAGE RINGS AND LINEAR COLLIDING BEAM SYSTEMS AT HIGH ENERGY

J.-E. Augustin^{*}, N. Dikanski[†], Ya. Derbenev[†], J. Rees[‡], B. Richter[‡], A. Skrinski[†], M. Tigner^{**}, and H. Wiedemann[‡]

Introduction

This note is the report of working Group I (J. Rees - Group Leader). We were assisted at times by U. Amaldi and E. Keil of CERN. We concerned ourselves primarily with the technical limitations which might present themselves to those planning a new and higher-energy electron-positron colliding-beam facility in a future era in which, it was presumed, a 70-GeV to 100-GeV LEP-like facility would already exist. In such an era, we reasoned, designers would be striving for center-of-mass energies of at least 700-GeV to 1-TeV. Two different approaches to this goal immediately came to the fore: one, a storage ring based on the principles of PEP, PETRA, and LEP and the other, a system in which a pair of linear accelerators are aimed at one another so that their beams will collide. We realized early in the study that a phenomenon which has been negligible in electron-positron systems designed to date would become important at these higher energies - synchrotron radiation from a particle being deflected by the collective electromagnetic field of the opposing bunch and we dubted this phenomenon "beam-strahlung." During the rest of the week we investigated the scaling laws for these two colliding-beam systems taking beam-strahlung into consideration.

1) very first paper on this topic: M.Tigner 1965

Luminosity vs Energy - a long debate...

Reminder: accelerated charges radiate

- Synchrotron radiation ~ operation cost:
 - ΔE ~ (E⁴ / m⁴R) per turn => 2 GeV at LEP2
- Cost in high-energy limit:
 - circular: \$\$ ~ a R + b ΔE ~ a R + b (E⁴ / m⁴R)
 optimize => R ~ E² => \$\$ ~ E²
 - linear : \$\$ ~ L, with L ~ E => **\$\$ ~ E**

LIMITATIONS ON PERFORMANCE OF e⁺e⁻ STORAGE RINGS AND LINEAR COLLIDING BEAM SYSTEMS AT HIGH ENERGY

J.-E. Augustin^{*}, N. Dikanski[†], Ya. Derbenev[†], J. Rees[‡], B. Richter[‡], A. Skrinski[†], M. Tigner^{**}, and H. Wiedemann[‡]

Introduction

This note is the report of working Group I (J. Rees - Group Leader). We were assisted at times by U. Amaldi and E. Keil of CERN. We concerned ourselves primarily with the technical limitations which might present themselves to those planning a new and higher-energy electron-positron colliding-beam facility in a future era in which, it was presumed, a 70-GeV to 100-GeV LEP-like facility would already exist. In such an era, we reasoned, designers would be striving for center-of-mass energies of at least 700-GeV to 1-TeV. Two different approaches to this goal immediately came to the fore: one, a storage ring based on the principles of PEP, PETRA, and LEP and the other, a system in which a pair of linear accelerators are aimed at one another so that their beams will collide. We realized early in the study that a phenomenon which has been negligible in electron-positron systems designed to date would become important at these higher energies - synchrotron radiation from a particle being deflected by the collective electromagnetic field of the opposing bunch and we dubted this phenomenon "beam-strahlung." During the rest of the week we investigated the scaling laws for these two colliding-beam systems taking beam-strahlung into consideration.

1) very first paper on this topic: M.Tigner 1965

. . . .; . . .

Luminosity vs Energy - a long debate...

Reminder: accelerated charges radiate

Synchrotron radiation ~ operation cost:

- $\Delta E \sim (E^4 / m^4 R)$ per turn => 2 GeV at LEP2
- Cost in high-energy limit:

cost

• circular : \$\$ ~ a R + b ΔE ~ a R + b (E⁴ / m⁴

linear : \$\$ ~ **L**, with **L** ~ **E** ٠

.

Luminosity vs Energy - a long debate...

Reminder: accelerated charges radiate

Synchrotron radiation ~ operation cost:

Cost in high-energy limit:

Center-of-Mass Energy [TeV] and we dubted this phenomeron "beam-strahlung." During the rest of the week we investigated the scaling laws for these two colliding-beam

"Higgs Factory

enera

Luminosity vs Energy of Future e⁺e⁻ Colliders

ILC baseline [arXiv:2203.07622] ILC luminosity upgrade [dito]

CLIC baseline [arXiv:2203.09186]

ILC250 10 Hz operation [dito]

CLIC luminosity upgrade [dito]

CEPC, 2 IPs, lumi up, power priv. com.]

FCCee, 2 IPs [arXiv:2203.08310] CEPC, 2 IPs [arXiv:2203.09451]

systems taking beam-strahlung into consideration.

1) very first paper on this topic: M.Tigner 1965

Production rates vs collision energy

Production rates vs collision energy

Production rates vs collision energy

considered by all proposed e+e- projects

Production rates vs collision energy

Production rates vs collision energy

But also higher energies have some advantages...

Full top quark program, including EW couplings, Yukawa, CPV, di-Higgs production, direct BSM...

Example: SMEFT fit to top quark sector

- expected precision on Wilson coefficients for HL-LHC alone and combined with various e+e- proposals
- e+e- at high center-of-mass energy and with polarised beams lifts degeneracies between operators

But also higher energies have some advantages...

Full top quark program, including EW couplings, Yukawa, CPV, di-Higgs production, direct BSM...

Example: SMEFT fit to top quark sector

- expected precision on Wilson coefficients for HL-LHC alone and combined with various e+e- proposals
- e+e- at high center-of-mass energy and with polarised beams lifts degeneracies between operators

top-quark physics does not end at the ttbar threshold...

Electroweak Baryogenesis?

most detailed ILC ref: PhD Thesis C.Dürig Uni Hamburg, **DESY-THESIS-2016-027 UPDATE ONGOING!**

Electroweak Baryogenesis?

HL-LHC

HE-LHC

FCC-ee

ILC

CEPC

CLIC

0

FCC-ee/eh/hh

most detailed ILC ref: PhD Thesis C.Dürig Uni Hamburg, DESY-THESIS-2016-027 **UPDATE ONGOING!**

Electroweak Baryogenesis?

HL-LHC

HE-LHC

FCC-ee

ILC

CEPC

CLIC

0

FCC-ee/eh/hh

DESY. | Overview of Linear Collider Projects | Jenny List, 1 April 2024

ee cross section rises

most detailed ILC ref: PhD Thesis C.Dürig Uni Hamburg, DESY-THESIS-2016-027 **UPDATE ONGOING!**

DESY. | Overview of Linear Collider Projects | Jenny List, 1 April 2024

DESY. | Overview of Linear Collider Projects | Jenny List, 1 April 2024

Forward-backward and left-right asymmetries above the Z pole

Study of ee \rightarrow cc / bb

 full Geant4-based simulation of ILD [A.Irles et al, pub. in prep.]

BSM example: Gauge-Higgs Unification models

- Higgs field = fluctuation of Aharonov-Bohm phase in warped extra dimension
- Z' as Kaluza-Klein excitations of γ , Z, Z_R
- various model point with $M_{Z'} = 7...20$ TeV

cos θ

Forward-backward and left-right asymmetries above the 7 note

Study of ee \rightarrow cc / bb

full Geant4-based simulation of ILD [A.Irles et al, pub. in prep.]

BSM example: Gauge-Higgs Unification models

- Higgs field = fluctuation of Aharonov-Bohm phase in warped extra dimension
- Z' as Kaluza-Klein excitations of γ , Z, Z_R

entries

70 F

60

50

40

30

20

10

ILCt

H20, I

🔶 F

H20,

B⁺₃ 3.9 3.2 1.5 1.3 0.9 0.4 0.5

<3σ

3-4 σ

(2000 fb⁻¹)

ILC250+500

 B_2

 $(2000 \text{ fb}^{-1} + 4000 \text{ fb}^{-1})$

 B_2^+

 B_3

B⁺₂

 B_3 4.1 3.4 1.1 1.4 0.4 0.7

B⁺₂ 3.6 2.9 1.6 1.0 1.0

B₂ 4.1 3.5 0.7 1.6

B⁺₁ 2.7 2.0 1.9

B₁ 4.2 3.7

A₂ 0.8

A₁

Α,

 $A_1 A_2$

B₁

B⁺

GHU vs SM discrimination power (σ -level)

Between-model discrimination power (σ -level) $B_{0}^{+} > 10 > 10 > 10 39 49 13 29$

Between-model discrimination power (σ-level) nv B^+_{a} >10 >10 >10 54 >10 27 76

ILD

Forward-backward and left-right asymmetries above the 7 note

entries

60

50

40

30

20

Study of ee \rightarrow cc / bb

full Geant4-based simulation of II D [A.Irles et al, pub. in prep.]

BSM example: Gauge-Higgs Unification models

- Higgs field = fluctuation of Aharonov-Bohm phase in warped extra dimension
- Z' as Kaluza-Klein excitations of γ , Z, Z_R

GHU vs SM discrimination power (σ -level)

B⁺₃ 0.3 0.4 0.4 0.5 0.7 0.7 0.9 1.2 1.3 2.1 2.5 2.5

Between-model discrimination power (σ -level) $B_{0}^{+} > 10 > 10 > 10 39 49 13 29$

Between-model discrimination power (σ-level) nv B^+_{a} >10 >10 >10 54 >10 27 76

ILD

Ch. had. PID

O: No PID

Forward-backward and left-right asymmetries above the 7 note

entries

70 F

60

50

40

30

20

Study of ee \rightarrow cc / bb

full Geant4-based simulation of ILD [A.Irles et al, pub. in prep.]

BSM example: Gauge-Higgs Unification models

- Higgs field = fluctuation of Aharonov-Bohm phase in warped extra dimension
- Z' as Kaluza-Klein excitations of γ , Z, Z_R

GHU vs SM discrimination power (σ -level)

Between-model discrimination power (σ -level) $B_{0}^{+} > 10 > 10 > 10 39 49 13 29$

Between-model discrimination power (σ-level) nv B^+_{a} >10 >10 >10 54 >10 27 76

21

ILD

Light Higgsinos

Or: beware what LHC limits really mean!

- LHC does very well on probing some BSM phase space
- but beware that exclusion regions are extremely modeldependent, especially for electroweak new particles (eg charginos, staus, ...)
- conclusions:
 - loop-hole free discovery / exclusion potential up to ~ half E_{CM}
 - even in most challenging cases few % precision on masses, cross-sections etc
 - SUSY parameter determination, cross-check with cosmology

Light Higgsinos

Or: beware what LHC limits really mean!

- LHC does very well on probing some BSM phase space
- but beware that exclusion regions are extremely modeldependent, especially for electroweak new particles (eg charginos, staus, ...)
- conclusions:
 - loop-hole free discovery / exclusion potential up to ~ half E_{CM}
 - even in most challenging cases few % precision on masses, cross-sections etc
 - SUSY parameter determination, cross-check with cosmology

- even in most challenging cases few % precision on masses, cross-sections etc
- SUSY parameter determination, cross-check with cosmology

Heavy Neutral Leptons

Discovery reach for lepton colliders - complementary to FCC-hh

in Z decays with displaced vertices...

...and at high masses in prompt decays

Sustainability

Gro Harlem Brundlandt at WEF 1989 ◎ WEF, CC-BY-SA-2.0

Cover of the "Brundtland Report" 198

Development that meets the needs of current generations without compromising the ability of future generations to meet their needs and aspirations. (WCED, 1987)

WCED (World Commission for Environment and Development) (1987) *Our Common Future*, Oxford University Press, Oxford.

Global Warming Potential

Study by C3

GWP of construction dominated by CO2 emission from the required concrete & steel => tunnel length (diameter, tunneling technique)

Global Warming Potential

Study by C3

GWP of construction dominated by CO2 emission from the required concrete & steel => tunnel length (diameter, tunneling technique)

[% eq. Precision-Weighted Total Carbon Footprint of Different Colliders Potential [Mtn CO₂ 6 9.0 8'0 Operations Construction +Z/WWC³ baseline Precision-Weighted Global Warming 00 70 70 70 70 Ċ3 CLIC ILC FCC-ee CEPC 250 + 500380 250 + 55088-365 91.2-360 Collider Project

Adding operation GWP

(here weighted by improvement of Higgs couplings over HL-LHC, and with power mix predictions for CERN, US, Japan, China):

- Operation dominates for LCs
- Construction dominates for CCs

arXiv:2307.04084

GWP of tunnel construction

Study by CLIC and ILC

- full life-cycle assessment according to ISO standards by consultancy company (ARUP)
- green house gas emission plus 13 more impact categorie
- roughly confirms C3 estimates (prev. slide)

https://edms.cern.ch/document/2917948/1

GWP of tunnel construction

Study by CLIC and ILC

- full life-cycle assessment according to ISO standards by consultancy company (ARUP)
- green house gas emission plus 13 more impact categorie
- roughly confirms C3 estimates (prev. slide)
- ~40% of reduction potential by
 - usage of low-CO2 materials (concrete, steel)
 - reduction of tunnel wall thickness

https://edms.cern.ch/document/2917948/1

DESY. | Overview of Linear Collider Projects | Jenny List, 1 April 2024

GWP of tunnel construction

Study by CLIC and ILC

- full life-cycle assessment according to ISO standards . by consultancy company (ARUP)
- green house gas emission plus 13 more impact categorie •
- roughly confirms C3 estimates (prev. slide)
- ~40% of reduction potential by
 - usage of low-CO2 materials (concrete, steel) •
 - reduction of tunnel wall thickness • A1-A5 GWP possible reduction (tCO₂e)

Shafts

Tunnels

https://edms.cern.ch/document/2917948/1

DESY. | Overview of Linear Collider Projects | Jenny List, 1 April 2024

Caverns

Instead of a conclusion...

An adaptable e+e- LC facility for the world

		Energy/Lum upgraded e+e-	
	"Higgs	s-factory" e+e-	
LHC followed	by HL LHC		
Today	2040	~2050-55	Time

A LC facility can be extended in length for higher energies, using the same or improved versions of the same technology, e.g. as suggested for ILC, CLIC, C3 and HALHF.

- It is also possible and realistic to change to more performant (usually higher gradient) technologies in an upgrade, e.g. from ILC to CLIC or C3, maybe even plasma
- Starting point for fast implementation: ILC has the most mature linac technology for large scale implementation, that is also well established in all regions and in industry - it is based on a 20-21km long and ~9-10m wide tunnel
- The physics at higher energies Higgs sector and extended models with increased reach and precision, top in detail well above threshold, searches and hopefully new physics – will open for a very exciting long term e+e- programme
- Such a programme can run in parallel with future hadron and/or muon colliders that can be developed, optimised and implemented as their key technologies mature

Thank you

Absolute Higgs Production Rate

Absolute normalisation of Higgs couplings & total decay width

- Higgs factory at 250 GeV: $e+e- \rightarrow ZH$
- can measure its total cross section: the key to model-independent determination of absolute couplings
- measurable independently of Higgs decays modes via recoil technique
- only possible at e+e- collider due to known momentum of colliding particle
- enables a plethora of further precision measurements

Interlude: Chirality in Particle Physics

Just a quick reminder...

- Gauge group of weak x electromagnetic interaction: SU(2) x U(1)
- L: left-handed, spin anti-|| momentum*
 R: right-handed, spin || momentum*
- · left-handed particles are fundamentally different from right-handed ones:
 - only left-handed fermions (e⁻) and right-handed anti-fermions (e⁺) take part in the charged weak interaction,
 i.e. couple to the W bosons
 - there are (in the SM) no right-handed neutrinos
 - right-handed quarks and charged leptons are singlets under SU(2)
 - also couplings to the Z boson are different for left- and right-handed fermions
- checking whether the differences between L and R are as predicted in the SM is a very sensitive test for new phenomena!

* for massive particles, there is of course a difference between chirality and helicity, no time for this today, ask at the end in case of doubt!

Physics benefits of polarised beams

Much more than statistics!

General references on polarised e e physics:

- arXiv:1801.02840
- Phys. Rept. 460 (2008) 131-243

A relationship only appreciated a few years ago...

• **THE key process** at a Higgs factory:

Higgsstrahlung e⁺e[−]→Zh

• ALR of Higgsstrahlung: very important to **disentangle** different **SMEFT operators!**

A relationship only appreciated a few years ago...

• **THE key process** at a Higgs factory:

Higgsstrahlung e⁺e[−]→Zh

• ALR of Higgsstrahlung: very important to **disentangle** different **SMEFT operators!**

A relationship only appreciated a few years ago...

- THE key process at a Higgs factory:
 Higgsstrahlung e⁺e⁻→Zh
- ALR of Higgsstrahlung: very important to **disentangle** different **SMEFT operators!**

A relationship only appreciated a few years ago...

- THE key process at a Higgs factory:
 Higgsstrahlung e⁺e⁻→Zh
- ALR of Higgsstrahlung: very important to **disentangle** different **SMEFT operators!**

Polarisation & Electroweak Physics at the Z pole

LEP, ILC, FCCee

recent detailed studies by ILD@ILC:

- at least factor 10, often ~50 improvement over LEP/SLC
- note in particular:
 - A_c nearly 100 x better thanks to excellent charm / anti-charm tagging:
 - excellent vertex detector
 - tiny beam spot
 - Kaon-ID via dE/dx in ILD's TPC

polarised "GigaZ" typically only factor 2-3
less precise than FCCee's unpolarised TeraZ
=> polarisation buys
a factor of ~100 in luminosity

Note: not true for pure decay quantities!
Top Quark Operators

SMEFT	Relevant operators							
	Coefficient	Operator	Coefficient	Operator				
	$C^1_{\varphi Q}$	$\left(\bar{Q}\gamma^{\mu}Q\right)\left(\varphi^{\dagger}i\overleftarrow{D}_{\mu}\varphi\right)$	$C^3_{\varphi Q}$	$\left(\bar{Q}\tau^{I}\gamma^{\mu}Q\right)\left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi\right)$				
	$C_{arphi t}$	$(\bar{t}\gamma^{\mu}t)\left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi\right)$	$C_{arphi b}$	$\left(\overline{b}\gamma^{\mu}b\right)\left(\varphi^{\dagger}i\overleftarrow{D}_{\mu}\varphi\right)$				
	$C_{t\varphi}$	$\left(\bar{Q}t\right)\left(\epsilon \varphi^{*} \; \varphi^{\dagger} \varphi\right)$	C_{tG}	$\left(\bar{t}\sigma^{\mu\nu}T^{A}t\right)\left(\epsilon\varphi^{*}G^{A}_{\mu\nu} ight)$				
	C_{tW}	$\left(\bar{Q}\tau^{I}\sigma^{\mu\nu}t\right)\left(\epsilon\varphi^{*}W^{I}_{\mu\nu} ight)$	C_{tB}	$\left(\bar{Q}\sigma^{\mu\nu}t\right)\left(\epsilon\varphi^*B_{\mu\nu}\right)$				
	$C_{qq}^{1(ijkl)}$	$(\bar{q}_i\gamma^\mu q_j)(\bar{q}_k\gamma_\mu q_l)$	$C_{qq}^{3(ijkl)}$	$(\bar{q}_i \tau^I \gamma^\mu q_j) (\bar{q}_k \tau^I \gamma_\mu q_l)$				
	$C_{uu}^{(ijkl)}$	$(\bar{u}_i\gamma^\mu u_j)(\bar{u}_k\gamma_\mu u_l)$	$C_{ud}^{8(ijkl)}$	$(\bar{u}_i\gamma^{\mu}T^A u_j)(\bar{d}_k\gamma_{\mu}T^A d_l)$				
	$C_{qu}^{8(ijkl)}$	$(\bar{q}_i\gamma^{\mu}T^Aq_j)(\bar{u}_k\gamma_{\mu}T^Au_l)$	$C_{qd}^{8(ijkl)}$	$(\bar{q}_i\gamma^{\mu}T^Aq_j)(\bar{d}_k\gamma_{\mu}T^Ad_l)$				
	C^1_{lQ}	$\left(\bar{Q}\gamma_{\mu}Q\right)\left(\bar{l}\gamma^{\mu}l\right)$	C_{lQ}^3	$\left(\bar{Q}\tau^{I}\gamma_{\mu}Q\right)\left(\bar{l}\tau^{I}\gamma^{\mu}l\right)$				
	C_{lt}	$(\bar{t}\gamma_{\mu}t)\left(\bar{l}\gamma^{\mu}l ight)$	C_{lb}	$\left(\overline{b} \gamma_{\mu} b ight) \left(\overline{l} \gamma^{\mu} l ight)$				
	C_{eQ}	$\left(\bar{Q}\gamma_{\mu}Q\right)\left(\bar{e}\gamma^{\mu}e\right)$	C_{et}	$(\bar{t}\gamma_{\mu}t)(\bar{e}\gamma^{\mu}e)$				
	C_{eb}	$\left(\bar{b}\gamma_{\mu}b\right)\left(\bar{e}\gamma^{\mu}e ight)$	_	_				

Snowmass Implementation Task Force

arXiv:2208.06030

Consistent assessment of readiness, risks, costs etc - not always identical to projects self-assessment

Proposal Name	c.m. energy	Luminosity/IP	Yrs. pre-	Yrs. to 1st
	$[\mathrm{TeV}]$	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	project R&D	physics
$FCC-ee^{1,2}$	0.24	7.7(28.9)	0-2	13-18
$CEPC^{1,2}$	0.24	8.3(16.6)	0-2	13-18
$ILC^{3}-0.25$	0.25	2.7	0-2	<12
CLIC^3 -0.38	0.38	2.3	0-2	13-18
CCC^3	0.25	1.3	3-5	13-18

all rather similar in time for R&D and (technically needed) time to physics

	Proposal Name	Power	Size	Complexity	Radiation
		Consumption			Mitigation
Circular colliders larger	FCC-ee (0.24 TeV)	290	91 km	Ι	Ι
and more power hungry	CEPC (0.24 TeV)	340	100 km	Ι	Ι
- but more lumi as well	ILC (0.25 TeV)	140	20.5 km	Ι	Ι
CLIC more complex	CLIC (0.38 TeV)	110	11.4 km	II	Ι
	CCC (0.25 TeV)	150	3.7 km	Ι	Ι

Snowmass Implementation Task Force

Consistent assessment of readiness, risks, costs etc - not always identical to projects self-assessment

Project Cost (no esc., no cont.) 4	7	12 18	30	50		Linear Higgs Factory ~7-88\$			
FCCee-0.24									
FCCee-0.37						cular niggs r	actory ~15B\$		
ILC-0.25									
ILC-0.5									
CLIC-0.38 US accounting in \$2021									
CCC-0.25	w/o escalation & contingency								
CCC-0.55									
		Proposal Name	Collider	Lowest	Technical	Cost	Performance	Overall	
Lowest Technolog		(c.m.e. in TeV)	Design	TRL	Validatior	Reduction	Achievability	Risk	
Lowest rechnolog	У		Status	Category	Requireme	nt Scope		Tier	
Reduilless Levels		FCCee-0.24	II			- 4 4 -		1	
KESVSIEMS			ТТ	KF Sys,. e+ s	src, arc & Doo	ster magnets		1	
		CEPC-0.24						1	
• e+ source		CEPC-0.24 ILC-0.25	II I	pol. e+ src				1	
 e+ source => let's take a clos 	er	CEPC-0.24 ILC-0.25 CCC-0.25	II I III	pol. e+ src cryomodules	, HOM detuni	ng		1 1 2	

Contact

Deutsches Elektronen-	
Synchrotron DESY	

Jenny List FTX jenny.list@desy.de

www.desy.de