# R&D Progress of Drift Chamber for CEPC

Linghui Wu, Guang Zhao, Gang Li, Xiaohui Qian, Yubing Zhao, Wei Wei, **Mingyi Dong** 

On behalf of DC group

2024.4.10

### Outline

- Introduction of drift chamber with dN/dx technique
- Performance study and prototype tests
- Preliminary mechanical design and FEA
- Overall scheme for electronics
- Summary

### Drift Chamber in CEPC 4<sup>th</sup> conceptual detector



#### Solenoid Magnet (3T / 2T ) Between HCAL & ECAL

- Advantage: the HCAL absorbers act as part of the magnet return yoke.
- **Challenges**: thin enough not to affect the jet resolution (e.g. BMR); stability.

#### Transverse Crystal bar ECAL

Advantage: better  $\pi^0/\gamma$  reconstruction. Challenges: minimum number of readout channels; compatible with PFA calorimeter; maintain good jet resolution.

#### A Drift chamber that is optimized for PID

Advantage: Work at high luminosity Z runs Challenges: sufficient PID power; thin enough not to affect the moment resolution. PID is essential for CEPC, especially for flavor physics

- The drift chamber optimized for PID with cluster counting technique
- Require better than  $3\sigma$ separation power for  $K/\pi$ with momentum up to 20GeV/c
- Benefits tracking and momentum measurement

#### Ionization measurement with dN/dX

- Measure number of clusters over the track, the number of clusters corresponds to the number of the primary ionization
- Yield of primary ionization is Poisson distribution
- To eliminate the effects of secondary ionization, dN/dx is based on peak finding and clusterization



### dN/dx vs dE/dx

#### dN/dx

- Number of primary ionization clusters per unit length
- Poisson distribution
- Small fluctuation

#### Cluster counting technique



#### dE/dx

- Energy loss per unit length
- Landau distribution
- Large fluctuation



#### $K/\pi$ separation power dN/dx vs dE/dx



dN/dx has a much better (2 times)  $K/\pi$  separation power up to 20 GeV/c compared to dE/dx (Simulation)

### Key issues with dN/dx measurement

- Detector optimization and performance study
  - Geometry of the detector
  - Mechanical structure, Material budget
  - Gas mixture: low drift velocity, suitable ionization density gas with low diffusion and low multi electron ionization
  - dN/dx resolution and PID capability
- Waveform test
  - Fast and low noise electronics
- dN/dx reconstruction algorithm
  - Identifying primary and secondary ionization signals
  - Reducing noise impacts

#### Performance study and Detector R&D

#### Waveform-based full simulation



### Machine learning reconstruction algorithm

- LSTM-based peak finding and DGCNN-based clusterization
- ~ 10% improvement of PID performance with ML

See Guang's talk for more details

**Long Short-Term Memory (LSTM)-based peak finding** higher efficiency than the derivative-based algorithm, especially for the pile-up recovery







### dN/dx Resolution



- dN/dx resolution: 2.5%-2.6% for pion
- 2.6%-2.7% for Kaon

- 1.2 m track length
- For 20 GeV/c K/ $\pi$ , Separation power: 3.2 $\sigma$

#### **Momentum Resolution**



#### $\sigma(1/pT) = a \pm b/pT$

|           | Higgs                 | Z-pole                |
|-----------|-----------------------|-----------------------|
| a (1/GeV) | 2.1×10 <sup>-5</sup>  | 3.2×10 <sup>-5</sup>  |
| b         | 0.77×10 <sup>-3</sup> | 1.16×10 <sup>-3</sup> |

Momentum resolution is comparable with TPC at Higgs and Z mode

#### **Detector R&D and beam test**





Electron beam

- Scintillator
- Developed fast and high bandwidth preamps
- Tested with electron beam at IHEP
  - Two drift tubes + preamps + ADC (1GHz)
  - Two scintillators provide trigger signals

### **Preliminary results**

- Low noise and high bandwidth preamplifiers
- Rise time : ~ ns
- Clear peaks





#### **Readout electronics design**



- The readout prototype system is developed to verify basic functions, consisting of an ADC board and an FPGA board. will be integrated into one board in next version
- The ADC sub card is based on two high-speed ADCs (ADI AD9695), 14 bit resolution, and a maximum sampling
  of 1.4 Gsps

#### Synergy with IDEA, Collaboration with INFN

- Beam tests organized by INFN group:
  - Two muon beam tests performed at CERN-H8 (βγ > 400) in Nov. 2021 and July 2022
  - A muon beam test (from 4 to 12 GeV/c) in 2023 performed at CERN
  - Ultimate test at FNAL-MT6 in 2024 with  $\pi$  and K (By = 10-140) to fully exploit the relativistic rise.
- Contributions from IHEP group:
  - Participate data taking and collaboratively analyze the test beam data
  - Develop the machine learning reconstruction algorithm







Nicola De Filippis, 2023 CEPC workshop, Nanjing 23-27, 2023

**Track Angle:** 

He:IsoB(80/20)

0.8 driftte180

#### Preliminary Mechanical Design

### **Overall Design (preliminary)**



CF Frame structure: 8 longitudinal hollow beams + 8 annular hollow beams + inner CF cylinder and outer CF cylinder

- Length : 5800mm
- Outer diameter: 3600mm, Inner Diameter: 1200mm;
- Thickness of each end plate: 25mm/20mm, weight :1100kg /880kg

#### **Overall Design**



- Stepped end plates design
- Can Provide space for end cap Si tracker and it is easy to fix the barrel Si tracker

#### Wire tension

|       | cell number /step | length | single sense wire<br>tension(g) | Single field wire<br>tension(g) | total tension /step (kg) |
|-------|-------------------|--------|---------------------------------|---------------------------------|--------------------------|
|       | 2684              | 4000   | 43.29                           | 66.52                           | 651.78                   |
|       | 3452              | 4360   | 51.43                           | 79.03                           | 995.95                   |
|       | 4220              | 4720   | 60.28                           | 92.62                           | 1426.88                  |
|       | 4988              | 5080   | 69.82                           | 107.29                          | 1953.63                  |
|       | 5756              | 5440   | 80.07                           | 123.03                          | 2585.27                  |
|       | 6524              | 5800   | 91.02                           | 139.85                          | 3330.85                  |
| total | 27623             |        |                                 |                                 | 10944                    |

Diameter of field wire (Al coated with Au) : 60μm Diameter of sense wire (W coated with Au): 20μm Sag = 280 μm

Meet requirements of stability condition:

$$T > (\frac{VLC}{d})^2 / (4\pi\varepsilon_0)$$

#### **Finite Element Analysis**



Thickness of CF wall: 3.2mm, including 16 composite layers. Thickness of each composite layer: 200µm

### **Results of FEA**



#### Loads: Wire tension + Axial self weight

### End plate thickness: 25mm

- Stress 20.9MPa,
- Endplate deformation 2.5mm,
- CF frame deformation 1.4mm



### End plate thickness: 20mm

- Stress 27.1MPa,
- Endplate deformation 3.4mm,
- CF frame deformation
   1.6mm

#### **Results of FEA**



Horizontal self weight Buckling coefficient : ~14

# The structure is stable

Vertical self weight Buckling coefficient : ~12

### Updated design parameters

| R extension                                                       | 600-1800mm                                |
|-------------------------------------------------------------------|-------------------------------------------|
| Length of outermost wires $(\cos\theta=0.85)$                     | 5800mm                                    |
| Thickness of inner CF cylinder: (for gas tightness, without load) | 200µm                                     |
| Thickness of outer CF cylinder: (for gas tightness, without load) | 300µm                                     |
| Outer CF frame structure                                          | Equivalent CF thickness: 1.8 mm           |
| Thickness of end Al plate:                                        | 20mm / 25mm                               |
| Cell size:                                                        | ~ 18 mm × 18 mm                           |
| Cell number                                                       | 27623                                     |
| Ratio of field wires to sense wires                               | 3:1                                       |
| Gas mixture                                                       | He/iC <sub>4</sub> H <sub>10</sub> =90:10 |

#### **Overall Scheme for Electronics**

#### Global design for DC Elec-TDAQ system



#### To BEE Considering : radiation hardness

Power consumption, Material budget

FEE-1: A rad-hard (analog) FEE (preamp)

FEE-2: Non rad-hard FEE for data buffering, in low dose region (ADC and FPGA)

TO BEE

### Preliminary readout scheme of Drift Chamber



1.4kW for each end plate, air cooling is OK no additional material bufget

12 signals + 1 Power 3dB attenuation @ 280MHz

ADC @1.3Gsps, 12bit

#### Data size estimation

- ADC sampling rate : 1.3Gsps, 12bit, sampling window: 1.5  $\mu s$ , data size/single hit: 2k $\times$ 2Byte
- Hit rate of the inner most layer: ~ 70kHz/cell, outer most layer: 10kHz /cell, average hit rate: ~30kHz/ cell
- Average Occupancy: 5% (10.5% for inner most layer, 1.2% for outer most layer)
- Each digital board corresponds to 12 preamplifier channels (sector includes inner to outer layers)
- Data size estimation:
  - 0.5Gbps/12 channels-- compatible with calibration requirement and overall readout scheme of the detector



12 chn in each sector

### Summary

- R&D progress of CEPC drift chamber:
  - Simulation studies show that 3.2  $\sigma$  K/ $\pi$  separation at 20GeV/c can be achieved with 1.2m track length
  - Development of fast electronics is under progress. Preliminary tests validated the performance of the readout electronics and the feasibility of dN/dx method
  - Cluster counting reconstruction algorithm based on deep learning is developed and shows promising performance for MC samples and test data
  - Preliminary mechanical design and FEA show the structure is stable under loads of wire tension and self weight
  - Global electronics scheme is reasonable
- Further study plan
  - Optimization of mechanical design
  - Detector optimization and performance study
  - dN/dx reconstruction algorithm
  - Prototyping and testing with full-length cells (mechanics, manufacturing, testing)

## Thanks for your attention



#### Garfield++ simulation



#### Material parameters in FEA

yield strength of 7075 aluminum:505MPa

|   | Young's<br>Modulus | Poisson's<br>Ratio |
|---|--------------------|--------------------|
| 1 | 71700000000        | 0.33               |

#### **Density of CF** 1.6

| - |              |           |      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |            | 1          |
|---|--------------|-----------|------|-----------------------------------------|------------|------------|
|   | E1           | E2        | Nu12 | G12                                     | G13        | G23        |
| 1 | 320000000000 | 700000000 | 0.29 | 4200000000                              | 4200000000 | 2700000000 |

#### **CF** parameter

| Data |                         |                         |                          |                          |                   |                          |                 |
|------|-------------------------|-------------------------|--------------------------|--------------------------|-------------------|--------------------------|-----------------|
|      | Ten Stress<br>Fiber Dir | Com Stress<br>Fiber Dir | Ten Stress<br>Transv Dir | Com Stress<br>Transv Dir | Shear<br>Strength | Cross-Prod<br>Term Coeff | Stress<br>Limit |
| •    | 200000000               | 60000000                | 22000000                 | 10000000                 | 5000000           | 0                        | 0               |

#### Carbon Fiber Material parameter

| 性能           | 东丽M55J复合材料 | 测试标准         |  |
|--------------|------------|--------------|--|
|              | 室温         |              |  |
| 0度拉伸强度,Mpa   | 2000       |              |  |
| 0度拉伸模量, GPa  | 320        |              |  |
| 泊松比          | 0.29       | ASTM D3039   |  |
| 90度拉伸强度, Mpa | 22         |              |  |
| 90度拉伸模量, GPa | 7.0        |              |  |
| 弯曲强度,Mpa     | 1000       |              |  |
| 弯曲模量, GPa    | 230        | ASTIVI D7264 |  |
| 0度压缩强度,Mpa   | 600        |              |  |
| 0度压缩模量, GPa  | 300        |              |  |
| 90度压缩强度, Mpa | 100        |              |  |
| 90度压缩模量, GPa | 6.5        |              |  |
| ILSS , Mpa   | 50         | ASTM D2344   |  |
| 面内剪切强度, Mpa  | 50         |              |  |
| 面内剪切模量, GPa  | 4.2        | M21101 D2210 |  |
|              |            |              |  |

#### FEA for different thick end plates

| Thickness of<br>end plate (mm) | Material budget<br>(X <sub>0</sub> ) | Max Deformation<br>(mm) | Max Stress<br>(MPa) |
|--------------------------------|--------------------------------------|-------------------------|---------------------|
| 30                             | 33.7%                                | 2.0                     | 16.7                |
| 25                             | 28.1%                                | 2.5                     | 20.9                |
| 20                             | 22.5%                                | 3.4                     | 27.1                |