
# **Overview of the CEPC Project**

#### Haijun Yang (for the CEPC study group)

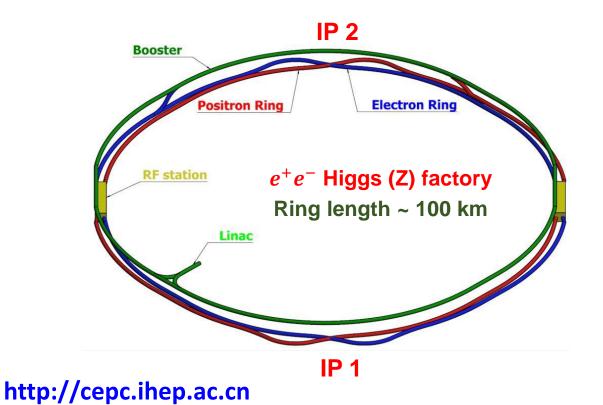


#### **CEPC International Workshop at Marseille, April 8 – 11, 2024**








- Introduction to CEPC
  - Goal and major milestones
  - Consensus on e<sup>+</sup>e<sup>-</sup> Higgs Factory
- CEPC Status and Progress
  - Physics Program
  - > Accelerator R&D
  - Detector R&D
- Project Planning and Development
- > Summary




# **Circular Electron Positron Collider (CEPC)**



- □ CEPC is an e<sup>+</sup>e<sup>-</sup> Higgs factory producing Higgs / W / Z bosons and top quarks, aims at discovering new physics beyond the Standard Model
- □ Proposed in September 2012 right after the Higgs discovery
- **Upgrade:** Super pp Collider (SppC) of  $\sqrt{s} \sim 100$  TeV in the future.







### **CEPC Major Milestones**







#### First CEPC IAC Meeting (2015.9)



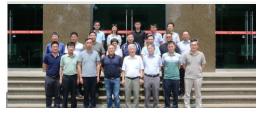
#### Public release: November 2018

IHEP-CEPC-DR-2018-01 EP-CEPC-DR-2018-02 HEP-AC-2018-01 EP-EP-2018-01 CEPC CEPC **Conceptual Design Report Conceptual Design Report** Volume I - Accelerator Volume II - Physics & Detector arXiv: 1809.00285 arXiv: 1811.10545 222 The CEPC Study Group The CEPC Study Group August 2018 October 2018 Editorial Team: 43 people / 22 institutions/ 5 countries

4




## **CEPC Major Milestones**






CEPC Accelerator TDR Review June 12-16, 2023, Hong Kong



CEPC Accelerator TDR Cost Review Sept. 11-15, 2023, Hong Kong



Domestic Civil Engineering Cost Review, June 26, 2023, IHEP



9<sup>th</sup> CEPC IAC 2023 Meeting Oct. 30-31, 2023, IHEP

#### CEPC Accelerator TDR released in December, 2023

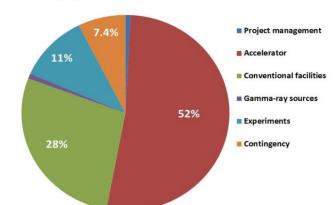


# CEPC

Technical Design Report

Accelerator

arXiv:2312.14363 1114 authors 278 institutes (159 foreign institutes) 38 countries


> The CEPC Study Group December 2023



# Distribution of CEPC Project TDR cost of 36.4B RMB (~4.7B Euro)

Table 12.1.2: CEPC project cost breakdown, (Unit: 100,000,000 yuan)

| Total                   | 364 | 100% |
|-------------------------|-----|------|
| Project management      | 3   | 0.8% |
| Accelerator             | 190 | 52%  |
| Conventional facilities | 101 | 28%  |
| Gamma-ray beam lines    | 3   | 0.8% |
| Experiments             | 40  | 11%  |
| Contingency (8%)        | 27  | 7.4% |





# **Global HEP Consensus on Higgs Factories**



#### The scientific importance and strategical value of e<sup>+</sup>e<sup>-</sup> Higgs factories is clearly identified.



China JAHEP Japan



#### Europe



**2013, 2016**: China Xiangshan Science Conference concluded that **CEPC is the best approach** and a major historical opportunity for the national development of accelerator-based high-energy physics program.

2017: Japan Association of High Energy Physicists (JAHEP) proposes to construct A 250 GeV center of mass ILC promptly as a Higgs factory.

2020: European Strategy for Particle Physics, An electron-positron Higgs factory is the highest priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy.

2022, ICFA "reconfirmed the international consensus on the importance of a Higgs factory as the highest priority for realizing the scientific goals of particle physics", and expressed support for the above-mentioned Higgs factory proposals



Pathways to Innovation and Discovery in Particle Physics

Report of the Particle Physics Project Prioritization Panel 2023





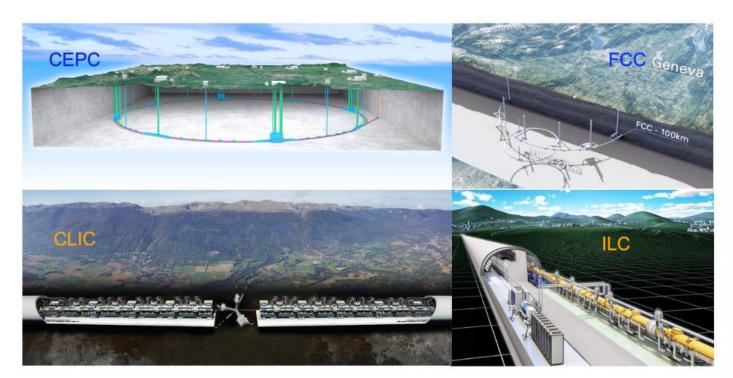
#### **Recommendation 6**

Convene a targeted panel with broad membership across particle physics later this decade that makes decisions on the US accelerator-based program at the time when major decisions concerning an off-shore Higgs factory are expected, and/or significant adjustments within the accelerator-based R&D portfolio are likely to be needed. A plan for the Fermilab accelerator complex consistent with the long-term vision in this report should also be reviewed.

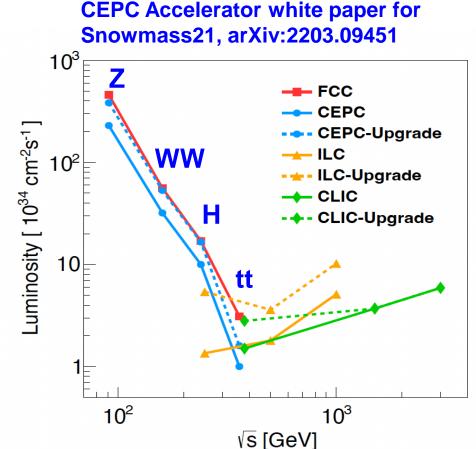
The panel would consider the following:

1. The level and nature of US contribution in a specific Higgs factory neuronal neuronal of the associated schedule, budget, and risks once crucial information becomes available.

2.Mid- and large-scale test and demonstrator facilities in the accelerator and collider R&D portfolios.


3.A plan for the evolution of the **Fermilab accelerator complex** consistent with the longterm vision in this report, which may commence construction in the event of a more favorable budget situation.

P5 report, USA, 2023




## **Comparison of Higgs factories: Circular vs Linear**





CEPC has strong advantages among mature e<sup>+</sup>e<sup>-</sup> Higgs factories (design report delivered)

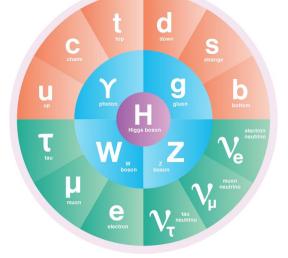


#### **Versus FCC-ee**

- Earlier data: collisions expected in 2030s (vs. ~ 2040s)
- Large tunnel cross section (ee & pp coexistence)
- Lower construction cost

#### **Versus Linear Colliders**

- Higher luminosity / precision for Higgs & Z
- Potential upgrade for pp collider



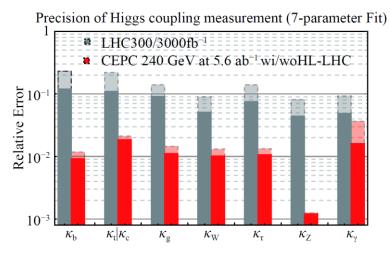

0



All elementary particles in the SM are discovered, it's a very successful theory. But we still have many open questions to be addressed:

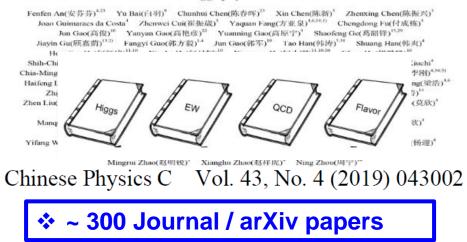
- $_{\odot}$  Is mass hierarchy of elementary particles normal ?
- $_{\odot}$  Is fine tuning of Higgs mass natural ?
- **Why a meta-stable vacuum ?**
- $_{\odot}$  What are the dark matter particles ?
- $_{\odot}$  Unification of interaction at very high energy ?



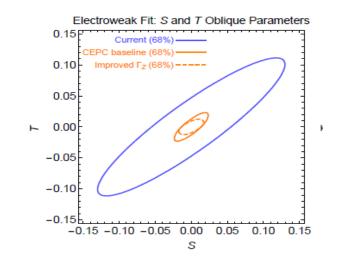

Higgs is considered as a new tool to explore physics beyond the SM.
 CEPC can produce millions of Higgs bosons and trillions of Z bosons with "clean" e+e- collision, it can provide unprecedented precision on Higgs, EW, QCD and flavor physics, and probe new physics up to 10 TeV.

# CEP

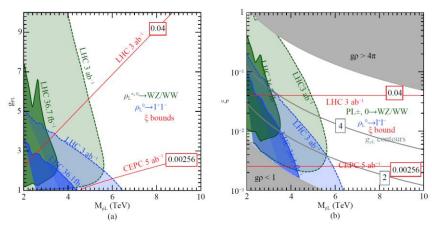
# **CEPC** Physics Program: Precision Measurement

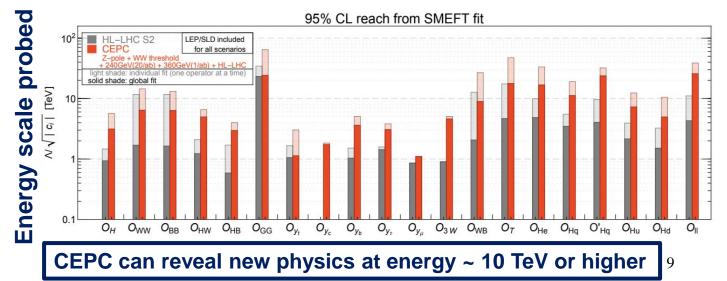



#### Higgs coupling precision can be improved by an order of magnititude



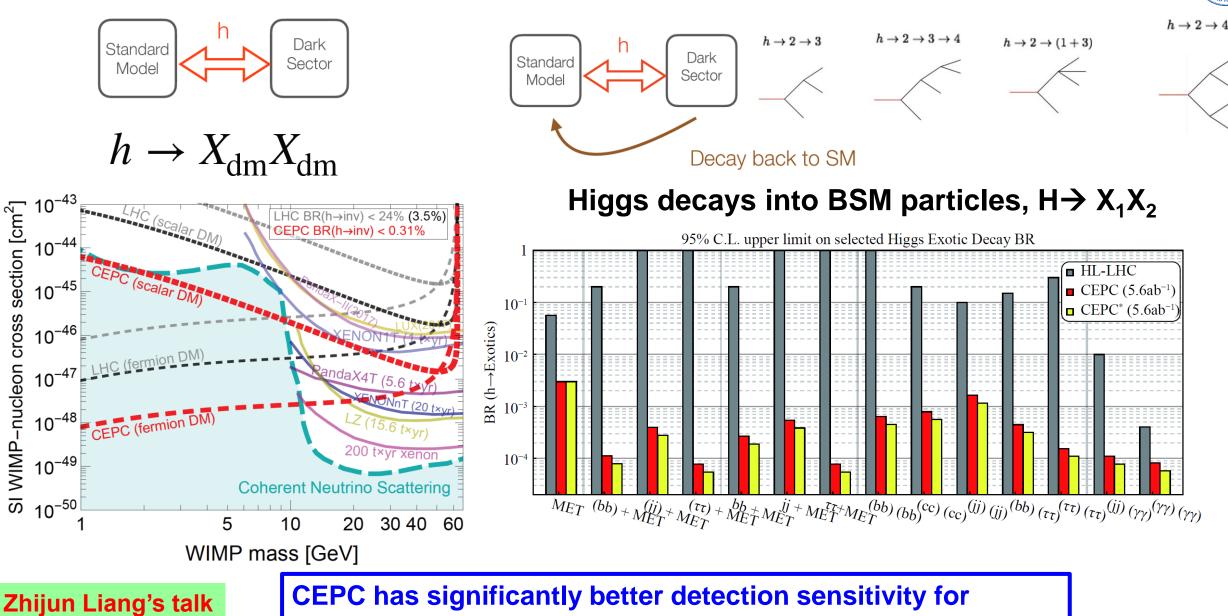

Chinese Physics C Vol. 43, No. 4 (2019) 043002


#### Precision Higgs physics at the CEPC\*




EW measurement can be improved by a large factor




Direct and indirect probe to new physics up to 10 TeV, an order of magntitude higher than the HL-LHC



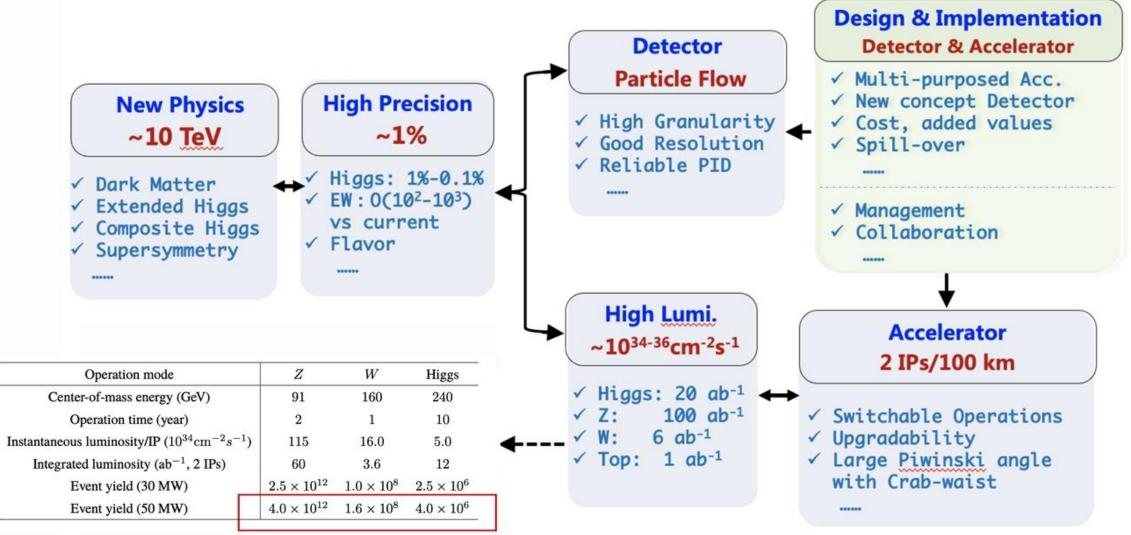




## **CEPC Physics Program: Discovery Potential**

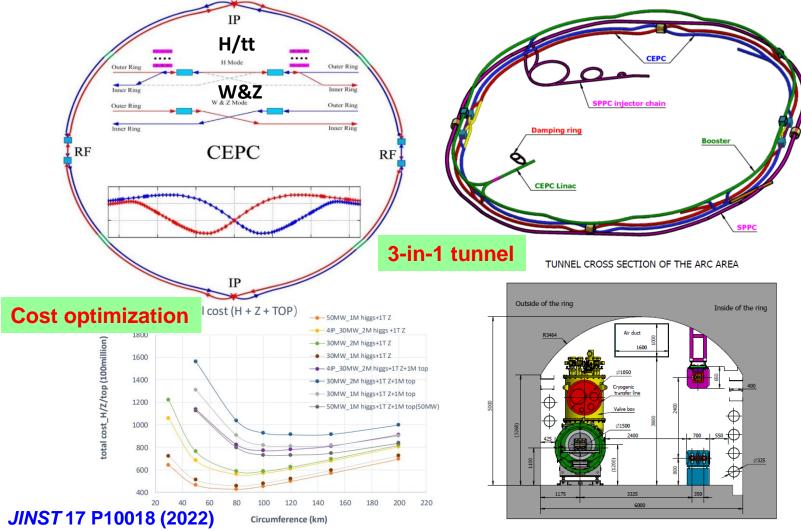


dark matter and selected Higgs exotic decays than HL-LHC

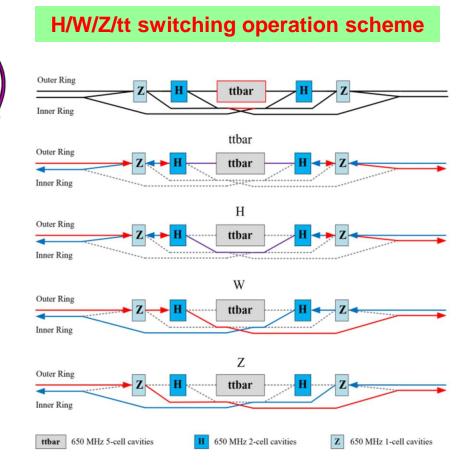

10



### **CEPC Concepts**




#### **CEPC Key Scientific Issues and Technologies Route**




## **CEPC Accelerator Design and Layout**

- 100 km double ring design (30 MW SR, upgradable to 50MW, ttbar)
- Switchable operation for H, Z, W and top modes
- Shared tunnel: compatible design for booster, CEPC and SppC







#### arXiv:2312.14363 12

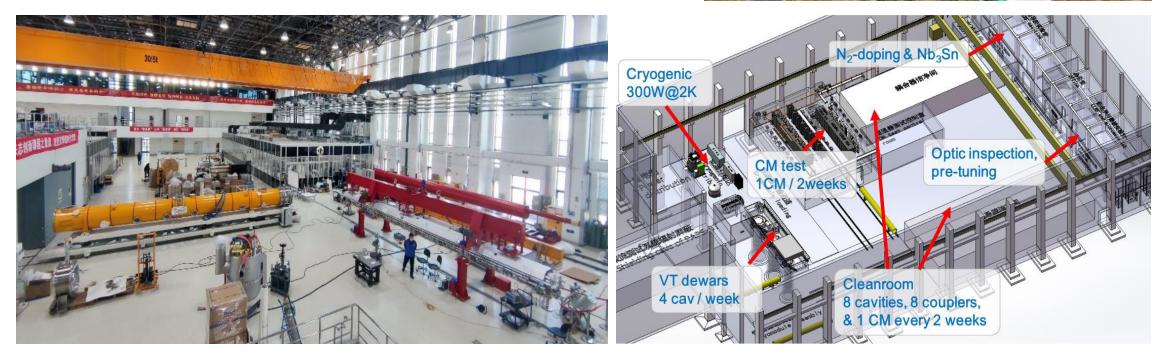


## **CEPC Operation Plan**



| Mode    | E <sub>c.m.</sub><br>(GeV) | Years | SR<br>Power<br>(MW) | Lumi. per IP<br>(10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | Integrated<br>Lumi.<br>per year<br>(ab <sup>-1</sup> , 2 IPs) | Total<br>Integrated Lumi<br>(ab <sup>-1</sup> , 2 IPs) | Total Events                        |      |
|---------|----------------------------|-------|---------------------|----------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------|-------------------------------------|------|
| Η*      | 240                        | 10    | 50                  | 8.3                                                                  | 2.2                                                           | 21.6                                                   | <b>4.3</b> × <b>10</b> <sup>6</sup> |      |
|         | 240                        | 5 10  | 30                  | 5                                                                    | 1.3                                                           | 13                                                     | <b>2.6</b> × <b>10</b> <sup>6</sup> |      |
| Z       | 91 2 -                     | 01 7  | 50                  | 192**                                                                | 50                                                            | 100                                                    | <b>4.1</b> × 10 <sup>12</sup>       |      |
| <b></b> |                            | 30    | 115**               | 30                                                                   | 60                                                            | $2.5 	imes 10^{12}$                                    |                                     |      |
| \\/     | W 160 1                    | 1     | 50                  | 26.7                                                                 | 6.9                                                           | 6.9                                                    | <b>2.1</b> × <b>10</b> <sup>8</sup> |      |
| VV      |                            | T     | 30                  | 16                                                                   | 4.2                                                           | 4.2                                                    | $1.3 \times 10^{8}$                 |      |
| ++      | tī 360                     | 5     | 50                  | 0.8                                                                  | 0.2                                                           | 1.0                                                    | <b>0.6</b> × <b>10</b> <sup>6</sup> |      |
|         |                            | 500   | 500                 | 5                                                                    | 30                                                            | 0.5                                                    | 0.13                                | 0.65 |

\* Higgs is the top priority, the CEPC will commence its operation with a focus on Higgs.

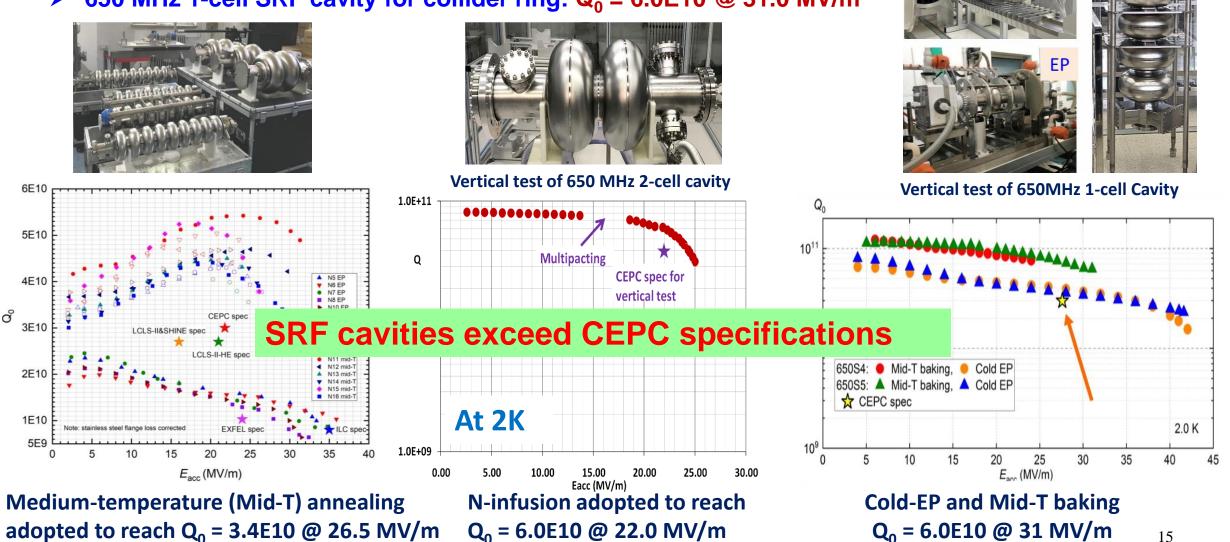

- \*\* Detector solenoid field is 2 Tesla during Z operation, 3 Tesla for all other energies.
- \*\*\* Calculated using 3,600 hours per year for data collection ( ~250 days with 60% efficiency).



# A New Lab: CEPC SRF Test Facility (PAPS)

- New Lab (4500m<sup>2</sup>) at Huairou Beijing, next to HEPS
- A cryogenic system: 2.5KW@4.5K or 300W@2K
- Ovens and clean rooms for cavity production
- 2 horizontal and 3 vertical SRF test stands
- About 200 SRF cavities / year
- Testing of klystrons, electron guns, magnets, etc.,
- NEG coating of vacuum pipes, ATF in the future








### **CEPC R&D: High Q SRF Cavities**

baking

- > 1.3 GHz 9-cell SRF cavity for booster:  $Q_0 = 3.4E10 @ 26.5 MV/m$
- > 650 MHz 2-cell SRF cavity for collider ring:  $Q_0 = 6.0E10 @ 22.0 MV/m$
- > 650 MHz 1-cell SRF cavity for collider ring:  $Q_0 = 6.0E10 @ 31.0 MV/m$





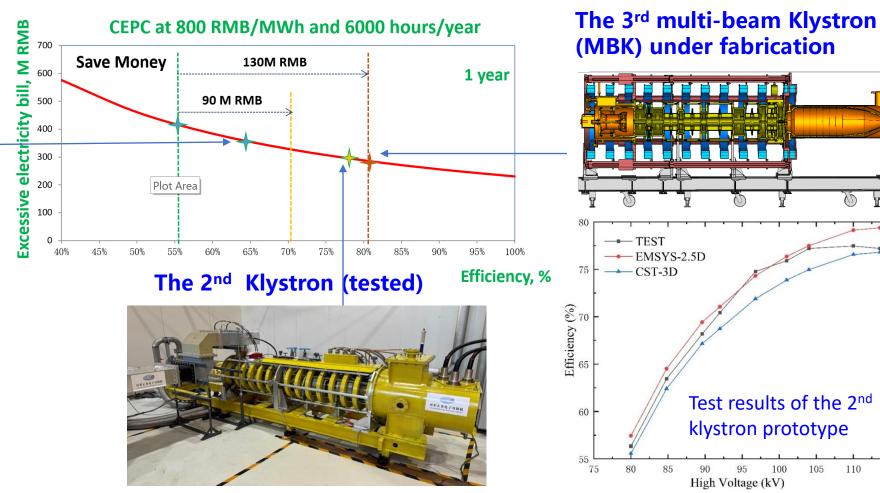


#### CEPC Booster 1.3 GHz SRF R&D and industrialization in synergy with CW FEL projects

| Parameters                                | Horizontal test      | <b>CEPC Booster</b>    | LCLS-II, SHINE         | LCLS-II-HE             |
|-------------------------------------------|----------------------|------------------------|------------------------|------------------------|
| i di diffeter s                           | results              | Higgs Spec             | Spec                   | Spec                   |
| Average usable CW E <sub>acc</sub> (MV/m) | 23.1                 | 3.0×10 <sup>10</sup> @ | 2.7×10 <sup>10</sup> @ | 2.7×10 <sup>10</sup> @ |
| Average <b>Q</b> <sub>0</sub> @ 21.8 MV/m | 3.4×10 <sup>10</sup> | 21.8 MV/m              | 16 MV/m                | 20.8 MV/m              |






# **CEPC R&D: High Efficiency Klystrons**

- The 1<sup>st</sup> Klystron prototype, achieved efficiency ~ 62%
- The 2<sup>nd</sup> Klystron prototype was tested in Feb. 2024, achieved efficiency ~ 77.2%
- The  $3^{rd}$  Klystron prototype (MBK) with manufacture underway, design efficiency is ~ 80%
- High efficiency Klystron helps to reduce electricity consumption



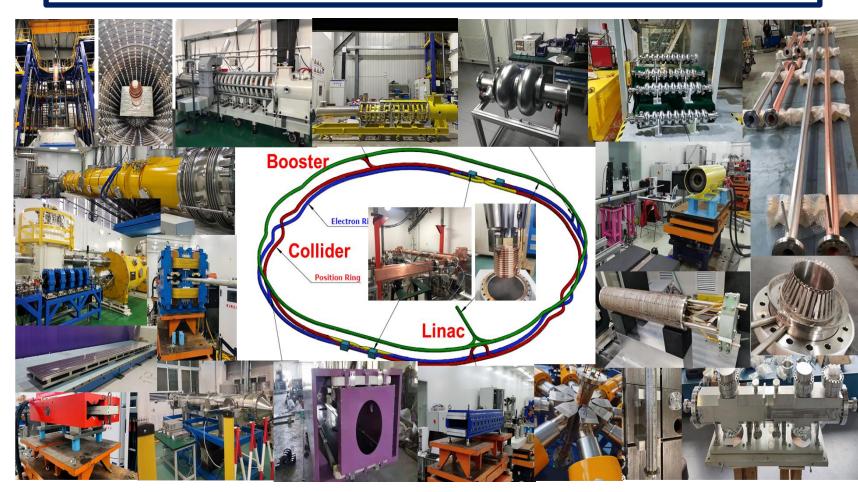
#### The 1<sup>st</sup> Klystron (tested)





110

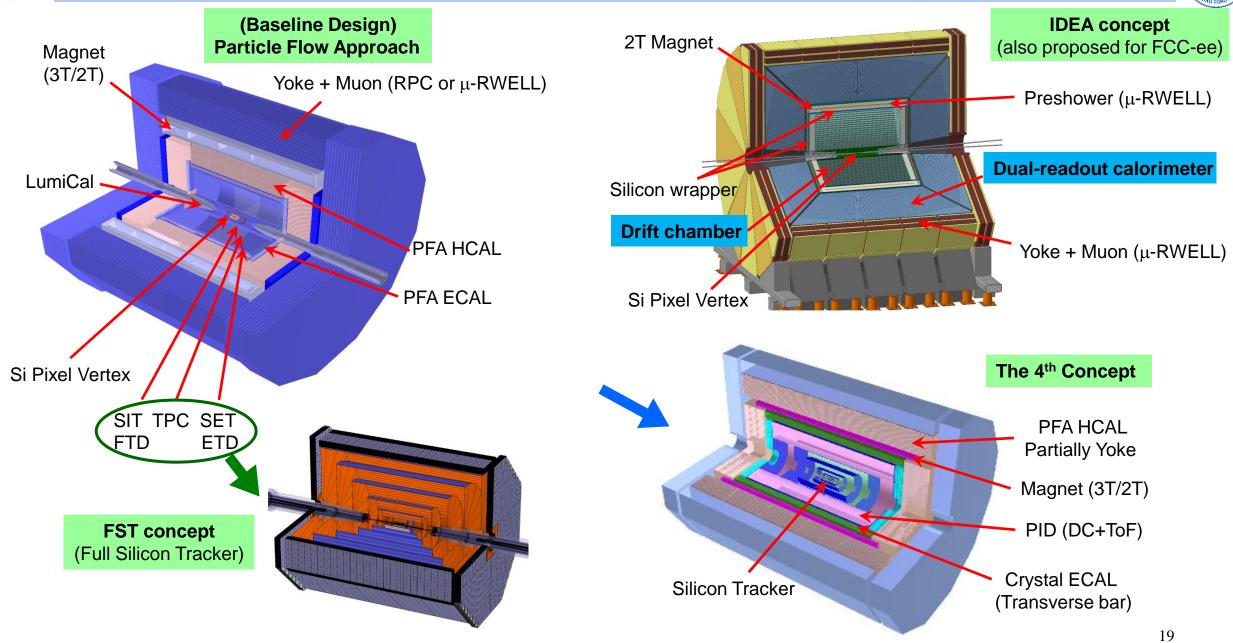
115




# **CEPC R&D: Accelerator Key Technologies**






About 10% remaining (e.g. RF power source, machine integration, control, alignment) to be completed by 2026.

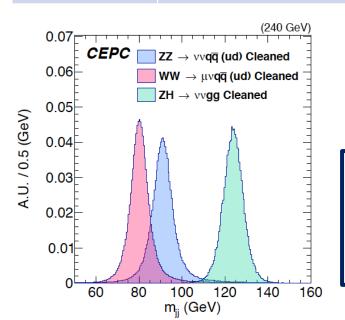


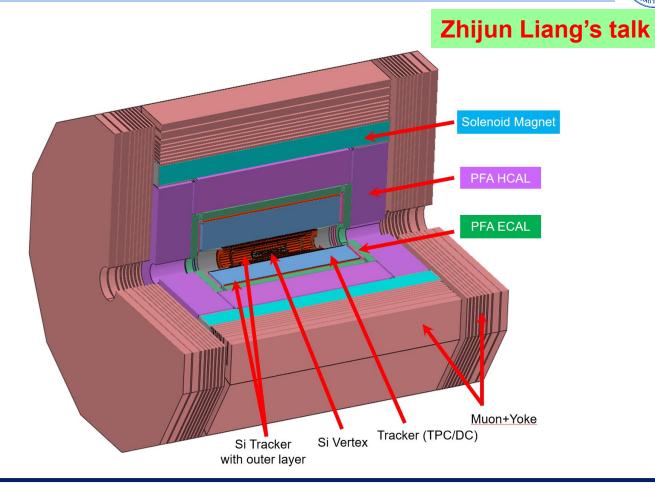
| Specification Met Manufacture |       |  |  |  |  |
|-------------------------------|-------|--|--|--|--|
| Accelerator                   | Ratio |  |  |  |  |
| 🗸 Magnets                     | 27.3% |  |  |  |  |
| Vacuum                        | 18.3% |  |  |  |  |
| RF power source               | 9.1%  |  |  |  |  |
| Mechanics                     | 7.6%  |  |  |  |  |
| 🗸 Magnet power supplies       | 7.0%  |  |  |  |  |
| SC RF                         | 7.1%  |  |  |  |  |
| Cryogenics                    | 6.5%  |  |  |  |  |
| Linac and sources             | 5.5%  |  |  |  |  |
| Instrumentation               | 5.3%  |  |  |  |  |
| Control                       | 2.4%  |  |  |  |  |
| Survey and alignment          | 2.4%  |  |  |  |  |
| Radiation protection          | 1.0%  |  |  |  |  |
| SC magnets                    | 0.4%  |  |  |  |  |
| Damping ring                  | 0.2%  |  |  |  |  |



## **CEPC Conceptual Detector Designs**





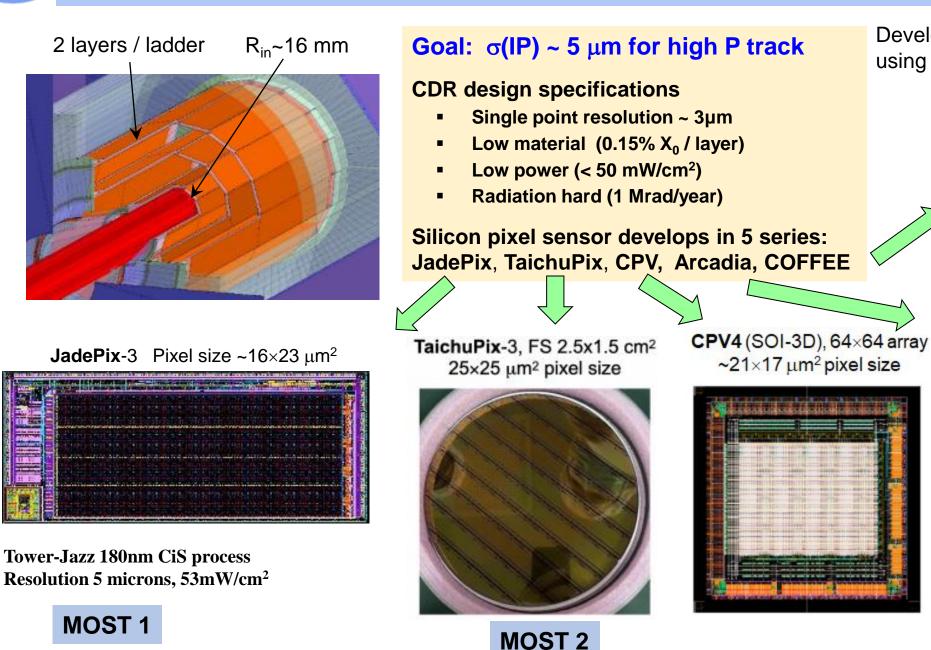


## Idea of the "4<sup>th</sup> Concept"



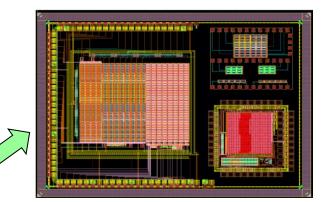
#### Novel detector design based on PFA calorimeter. Aim at improving BMR from 4% to 3%

| Detector            | World-class level       | 4 <sup>th</sup> concept   |
|---------------------|-------------------------|---------------------------|
| PFA based<br>(ECAL) | <mark>∼</mark> 20% / √E | <mark>&lt; 3% / √E</mark> |
| PFA based<br>(HCAL) | ~ 50% / √E              | $\sim$ 40% / ve           |






Silicon combined with TPC or DC for better tracking & PID
 Crystal ECAL with timing for PFA and better EM resolution
 Scintillating glass HCAL for better sampling and resolution




## **CEPC R&D: Silicon Pixel Chips**





#### Develop **COFFEE** for a CEPC tracker using SMIC 55nm HV-CMOS process



**Arcadia** by Italian groups for IDEA vertex detector LFoundry 110 nm CMOS





## **CEPC Detector R&D: Silicon, TPC, DC Prototypes**

0.14

0.06

S 0.12



#### Test beam @ DESY

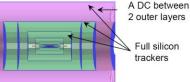
- 2<sup>nd</sup> testbeam: April 11-23 2023 DESY test beam in Germany (4-6 GeV electron) Vertex detector prototype testbeam
- 1<sup>st</sup> testbeam: Dec 12-22 2022 DESY test beam in Germany (4-6 GeV electron)
- TaichuPix Beam Telescope testbeam

#### 2022 DESY test





Excellent collaboration with DESY testbeam team



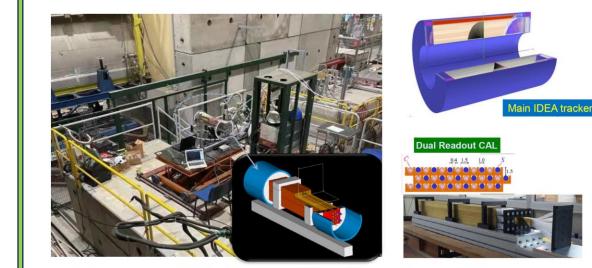

- Cluster counting method, or dN/dx, measures the number of primary ionization
- Can be optimized specifically for PID: larger cell size, no stereo layers, different gas mixture.
- Garfield++ for simulation, realistic electronics, peak finding algorithm development.

Time (ns)

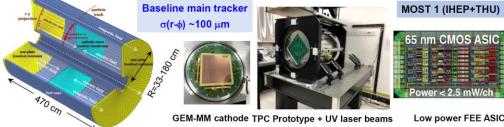
Signal

Noise

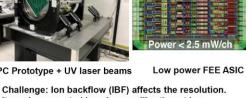




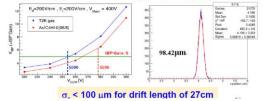




IHEP and Italian INFN groups have close collaboration and regular meetings. IHEP joined the TB (led by INFN group) in 2021 and 2022

K/ $\pi$  separation vs momentum ( $\theta$ =90°) dEids trut


Momentum (GeV/c)




Italian groups and IHEP colleagues participated the test beam at CERN.







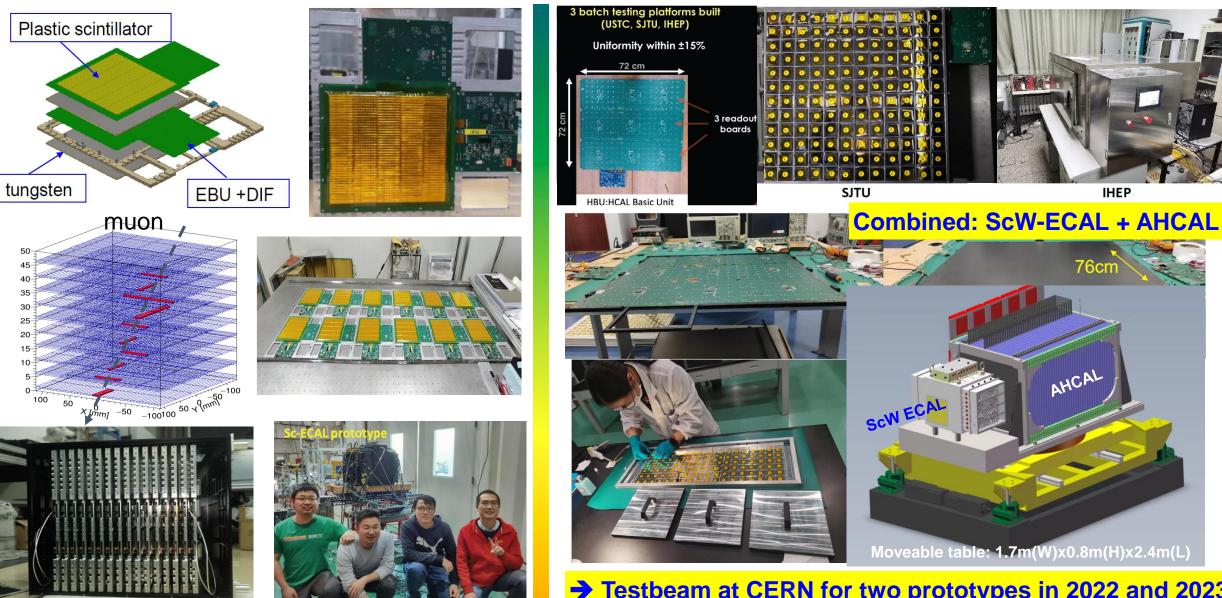
It can be corrected by a laser calibration at low luminosity, but difficult at high luminosity Z-pole.





### **CEPC R&D: PFA Calorimeter Prototypes**




IHEP

76cn

AHCAL

#### ScW ECAL Prototype (32-layer, 6720-ch)

#### Scintillator + SiPM AHCAL Prototype (40-layer, 12960-ch)



**Testbeam at CERN for two prototypes in 2022 and 2023** 



## **CEPC Detector R&D: Calorimeter Prototypes**









| Det          | Technology         | Det         | Technology          |
|--------------|--------------------|-------------|---------------------|
| ×            | JadePix            |             | Crystal ECAL        |
| erte)        | TaichuPix          |             | Stereo Crystal ECAL |
| I Ve         | CPV(SOI)           |             | Scint+W ECAL        |
| Pixel Vertex | Stitching          | Calorimeter | Si+W ECAL           |
| ш            | Arcadia            | rim         | Scint+Fe AHCAL      |
|              | CEPCPix            | Calc        | ScintGlass AHCAL    |
| PID          | Silicon Strip      | U           | RPC SDHCAL          |
| Š            | TPC                |             | MPGD SDHCAL         |
| Tracker &    | Drift chamber      |             | DR Calorimeter      |
| Tra          | PID drift chamber  | L           | Scintillation Bar   |
|              | LGAD ToF           | Muon        | RPC                 |
| Lumi         | SiTrk+Crystal ECAL | 2           | <sup>μ</sup> -Rwell |
| Lu           | SiTrk+SiW ECAL     |             | HTS / LTS Magnet    |
|              | CEPC SW            |             | MDI & Integration   |
|              | TDAQ               |             |                     |

- Large number of detector technology options and R&D projects on-going, they are not at similar level of maturity.
- Need to converge technology options towards a CEPC reference detector TDR
  - Start preparation in Jan. 2024
  - ✤ A draft version of TDR in Dec. 2024
  - ✤ Official release of TDR in Jun. 2025

#### > Intl. detector collaborative efforts

- DRD proto-collaboration (DRD1-8), more than 130 colleagues from 11 Chinese institutes joined so far.
- HL-LHC detector R&D efforts help to prepare teams for CEPC detectors.



**CEPC Accelerator Main EDR Development: SRF** 

### **CEPC Accelerator EDR**



**CEPC Alignment and Installation Plan in EDR** 

#### CEPC Accelerator EDR tasks start with 35 WGs aiming for key issues, detailed working plan and scope will be reviewed by IARC in Sept. 2024.

#### **CEPC Accelerator Main EDR Development: Klystrons** Alignment accuracy requirement Parameters Value Pre-alignme Ax (mm) Δv (mm) Δθ. (mrad) 5720 MHz Frequency 0.10 0.10 0.10 Output Power 80MW 0.10 0.10 0.10 Pulsed width 2.5us 0.10 0.10 0.10 Repetition rate 100Hz 0.10\* 0.10 54 dB Gain GPS receive Surface Cont CEPC collider ring 650MHz 2\*cell short test mo **CEPC Tunnel Mockup for Installation in EDR** round Control Poi 美区风景 ckbone Control network The collider Higgs mode for 30 MW SR power per beam will Booster波导 nort line:300m; long line 600m) 4, 2024, H (interval of 6 meters) contain six 650 MHz 2-cell cavities, and therefore, a full siz Booster使道幕 Collider波导 CEPC Accelerator EDR Plan-L Gao HKUST-IAS HEP Conference, Jar 野区风景 Collider恒温器 **CEPC MDI in EDR CEPC Magnets' Automatic** 通用水管 27800 Booster magnets installation To reduce the fabrication cost of the ma **General Parameters** Collider蛋压设计 60000 production lines will be demonstrated in 建造 Radiation Mitigation jection background Conceptual design type-I (Booster Aasks, collimators, shieldi magnet) 32200 Jan.-Sept. 2024 : Complete the CEPC booster magnet auton 1DI need to be done in EDR together with 60000 pipe, RVC, integration, alignment, mecha Collider ring magnets supports Oct. 2024-Jun. 2025: Complete the small scale demonstration core fabrication A 60 m long tunnel mockup, including parts of arc section and part of RF section CEPC Accelerator EDR Plan-J. Gao

To demonstrate the inside tunnel alignment and installation, especially for booster installation on the roof of the tunnel



# **CEPC International Collaboration**



#### **CEPC** attracts significant International participation

- > Both CDR and TDR have significant intl. contributions
- > 20+ MoUs signed with Intl. institutions and universities
- CEPC International Workshop since 2014
- EU-US versions of CEPC Workshop since 2018
- Annual working month at HKUST-IAS since 2015

#### CEPC CDR released (2018) Public release: November 2018 HEP-CEPC-DR-2018-01 HER-AC-2018-0 CEPC CEPC Conceptual Design Report **Conceptual Design Report** Volume I - Accelerator Volume II - Physics & Detector arXiv: 1809.00285 arXiv: 1811.10545 The CEPC Study Group The CEPC Study Group August 2018 October 2018 Editorial Team: 43 people / 22 institutions/ 5 countries

#### CEPC TDR released (2023)

IHEP-CEPC-DR-2023-01 IHEP-AC-2023-01

#### CEPC Technical Design Report Accelerator

arXiv:2312.14363 1114 authors 278 institutes (159 foreign institutes) 38 countries

> The CEPC Study Group December 2023





### **CEPC International Collaboration**





#### CEPC @ Rome, Italy, May 2018



CEPC @ Edinburgh, UK, July 2023



#### CEPC @ Oxford, UK, April 2019



CEPC @ U. Chicago, USA, Sept. 2019 CEPC @ Washington DC, USA, April 2020 <sup>28</sup>



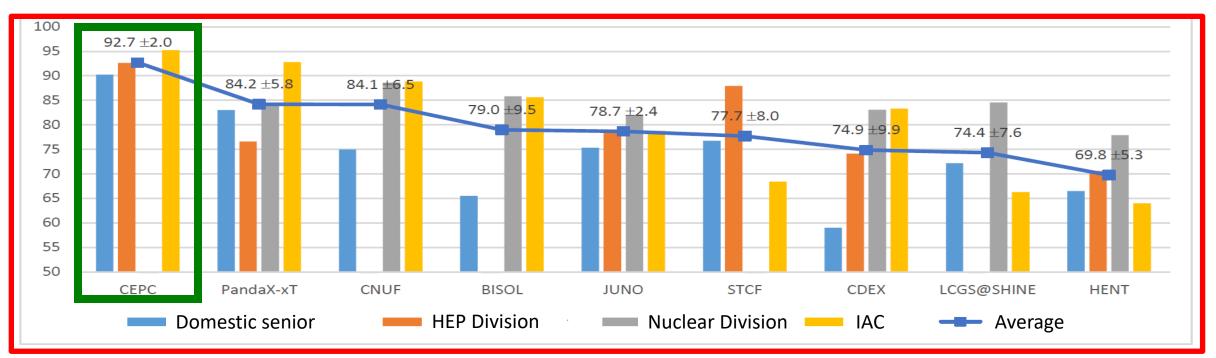
# Industrial Partners and Suppliers Worldwide







### **CEPC Site Selection**










- CAS is planning for the 15<sup>th</sup> 5-year plan for large science projects, and a steering committee has been established, chaired by the president of CAS.
- > High energy physics and nuclear physics is one of eight groups (fields).
- > CEPC is ranked No. 1, by every committee (2 domestic and 1 international).
- A final report was submitted to CAS for consideration, this process is within CAS, and the following national selection process will be decisive.





# **CEPC Planning and Schedule**



| 2012.9 2015.3    | 2018.11 | 2023.12  | 2025.6   | 2027 | 15 <sup>th</sup> five year plan (2026-2030) |
|------------------|---------|----------|----------|------|---------------------------------------------|
| proposed Pre-CDR | CDR     | Acc. TDR | Det. TDR | EDR  | Start of construction                       |

#### **CEPC EDR Phase: 2024-2027**

- CEPC Accelerator EDR starts with 35 WGs in 2024, to be completed in 2027
- CEPC Reference Detector TDR will be released by June, 2025
- CEPC proposal will be submitted to Chinese government for approval in 2025
- Upon approval, establish at least two international experiment collaborations
- CEPC construction starts during the 15<sup>th</sup> five year plan (2026-2030, e.g. 2027)
- CEPC construction complete around
   2035, at the end of the 16<sup>th</sup> five year plan





# **CEPC** Planning and Schedule



| 2012.9 2015.3    | 2018.11 | 2023.12  | 2025.6   | 2027 | 15 <sup>th</sup> five year plan (2026-2030) |
|------------------|---------|----------|----------|------|---------------------------------------------|
| proposed Pre-CDI | R CDR   | Acc. TDR | Det. TDR | EDR  | Start of construction                       |

#### CEPC EDR Phase: 2024-2027

- Contributions from international colleagues for both accelerator EDR and reference detector TDR are warmly welcome.
- Several dedicated topical workshops (in-person + online) will be organized, such as tracker system, calorimeter system, MDI etc.
- > A series of reviews will be organized for accelerator EDR and detector TDR.
- > Joint study groups aiming for some common issues related to FCC/CEPC.
- International colleagues could contribute in many different ways, such as helping to organize workshops, report writing and editing, as reviewers etc.



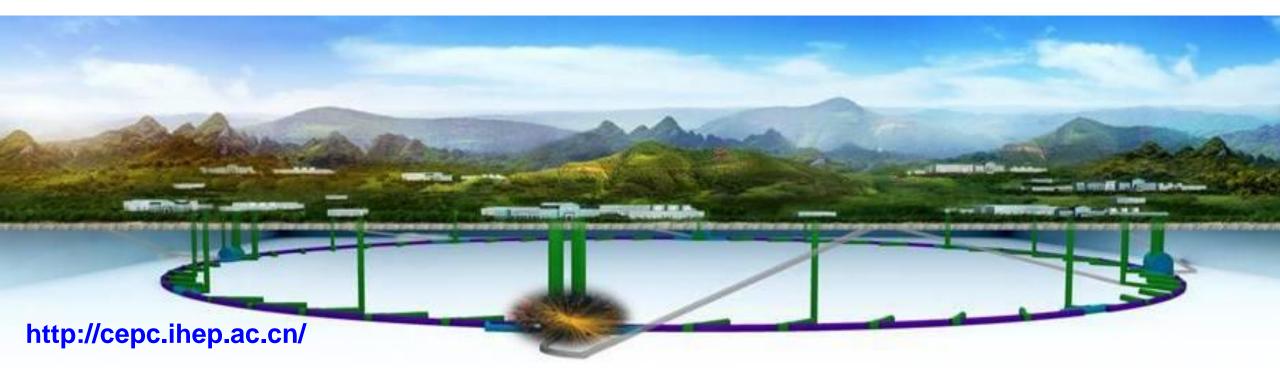
# Summary



- CEPC addresses many most pressing and critical science problems in particle physics.
- Accelerator design and technology R&D are reaching maturity, TDR completed, enters EDR phase, ready for construction in 3-5 years.
- Reference detector TDR under preparation, to be completed by the mid-2025 for the proposal of China's 15<sup>th</sup> 5-year plan.
- CEPC schedule will follow the 15<sup>th</sup> 5-year plan, call for international experiment collaborations and proposals once CEPC is approved.
- > Continue to work with government and funding agencies for support.
- > CEPC will offer the worldwide HEP community an early Higgs factory.



### Next CEPC Workshop




#### CEPC International Workshop at Hangzhou, Zhejiang U., Oct. 23-27, 2024



### Acknowledgement

### Thanks to CEPC team for enormous efforts and achievements Special thanks to CEPC IAC, IARC and TDR review committee





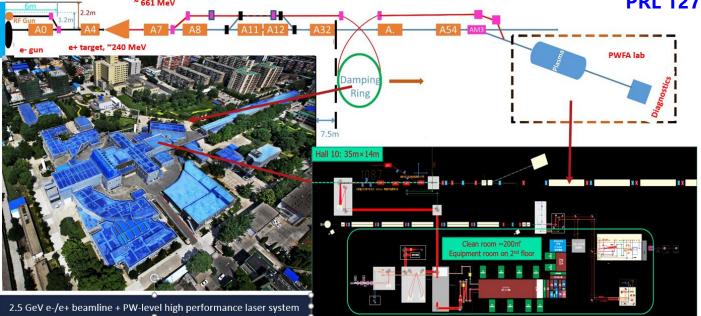
## **CEPC Machine Parameters**



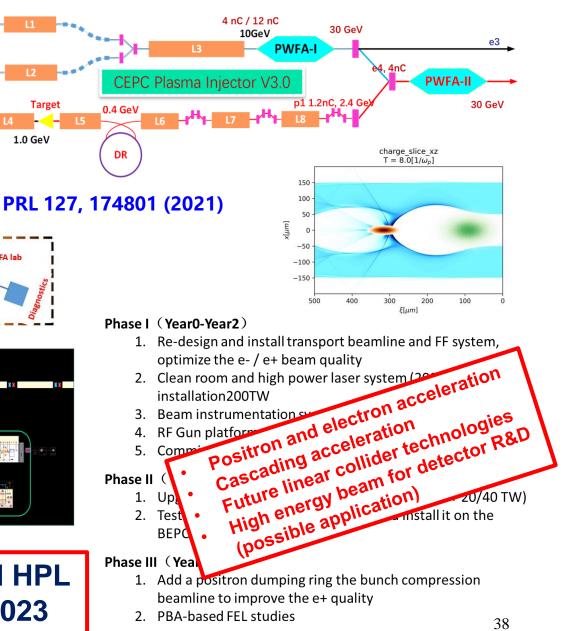
|                                                                        | Higgs          | Z           | W           | $t\bar{t}$    |  |  |
|------------------------------------------------------------------------|----------------|-------------|-------------|---------------|--|--|
| Number of IPs                                                          | 2              |             |             |               |  |  |
| Circumference (km)                                                     | 100.0          |             |             |               |  |  |
| SR power per beam (MW)                                                 | 30             |             |             |               |  |  |
| Half crossing angle at IP (mrad)                                       |                | 1           | 6.5         |               |  |  |
| Bending radius (km)                                                    |                | 1           | 0.7         |               |  |  |
| Energy (GeV)                                                           | 120            | 45.5        | 80          | 180           |  |  |
| Energy loss per turn (GeV)                                             | 1.8            | 0.037       | 0.357       | 9.1           |  |  |
| Damping time $\tau_x/\tau_y/\tau_z$ (ms)                               | 44.6/44.6/22.3 | 816/816/408 | 150/150/75  | 13.2/13.2/6.6 |  |  |
| Piwinski angle                                                         | 4.88           | 24.23       | 5.98        | 1.23          |  |  |
| Bunch number                                                           | 268            | 11934       | 1297        | 35            |  |  |
| Bunch spacing (ns)                                                     | 591            | 23          | 257         | 4524          |  |  |
|                                                                        | (53% gap)      | (18% gap)   |             | (53% gap)     |  |  |
| Bunch population (10 <sup>11</sup> )                                   | 1.3            | 1.4         | 1.35        | 2.0           |  |  |
| Beam current (mA)                                                      | 16.7           | 803.5       | 84.1        | 3.3           |  |  |
| Phase advance of arc FODO (°)                                          | 90             | 60          | 60          | 90            |  |  |
| Momentum compaction (10⁻⁵)                                             | 0.71           | 1.43        | 1.43        | 0.71          |  |  |
| Beta functions at IP $\beta_x / \beta_y$ (m/mm)                        | 0.3/1          | 0.13/0.9    | 0.21/1      | 1.04/2.7      |  |  |
| Emittance $\varepsilon_x / \varepsilon_y$ (nm/pm)                      | 0.64/1.3       | 0.27/1.4    | 0.87/1.7    | 1.4/4.7       |  |  |
| Betatron tune $n_x/n_y$                                                | 445/445        | 317/317     | 317/317     | 445/445       |  |  |
| Beam size at IP s <sub>x</sub> /s <sub>y</sub> (um/nm)                 | 14/36          | 6/35        | 13/42       | 39/113        |  |  |
| Bunch length (natural/total) (mm)                                      | 2.3/4.1        | 2.5/8.7     | 2.5/4.9     | 2.2/2.9       |  |  |
| Energy spread (natural/total) (%)                                      | 0.10/0.17      | 0.04/0.13   | 0.07/0.14   | 0.15/0.20     |  |  |
| Energy acceptance (DA/RF) (%)                                          | 1.6/2.2        | 1.0/1.7     | 1.2/2.5     | 2.0/2.6       |  |  |
| Beam-beam parameters $x_x / x_y$                                       | 0.015/0.11     | 0.004/0.127 | 0.012/0.113 | 0.071/0.1     |  |  |
| RF voltage (GV)                                                        | 2.2            | 0.12        | 0.7         | 10            |  |  |
| RF frequency (MHz)                                                     | 650            |             |             |               |  |  |
| Longitudinal tune <i>n<sub>s</sub></i>                                 | 0.049          | 0.035       | 0.062       | 0.078         |  |  |
| Beam lifetime (Bhabha/beamstrahlung) (min)                             | 39/40          | 82/2800     | 60/700      | 81/23         |  |  |
| Beam lifetime (min)                                                    | 20             | 80          | 55          | 18            |  |  |
| Hourglass Factor                                                       | 0.9            | 0.97        | 0.9         | 0.89          |  |  |
| Luminosity per IP (10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | 5.0            | 115         | 16          | 0.5           |  |  |

37




## **CEPC Accelerator: Plasma Injector**

Witness beam




### CEPC Plasma Injector Scheme From 10 GeV $\rightarrow$ 30 GeV $\rightarrow$ TR $\geq$ 2

Simulation results show that it works on paper with reasonable error tolerances for both electron & positron beams injected to booster



PWFA/LWFA TF based on BEPC-II Linac and HPL has founded by CAS, 120M RMB in Sept. 2023

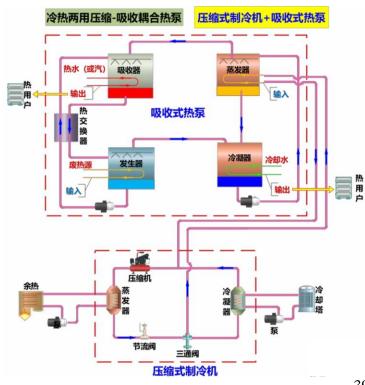




# **CEPC R&D: Towards a Green Accelerator**



## **Experience at HEPS**

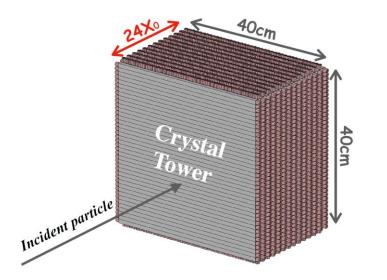

- Solar panel:10 MW → 10% saving
- Permanent magnet: 5.6 GWh saving/yr
- Hot water (13 MW @ 42 °C) for heating: more than what HEPS needs

## **R&D for CEPC**

- High eff. Klystron, energy recovery Klystron
- R&D of a "cooling-compressor + heating-pump system" to recover hot water in winter and cooling water in summer for use at HEPS
- Investigate power generator using low-T hot water



## Solar panel on the roof of HEPS






# **CEPC R&D: Calorimeters with PFA**



## **Crystal ECAL**

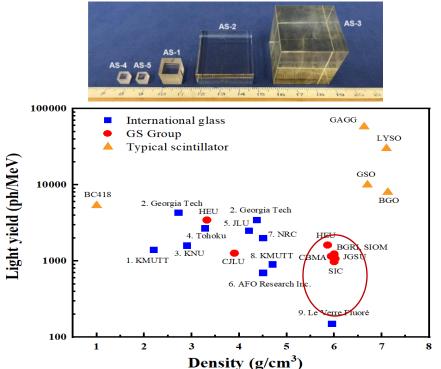


# Energy resolution $\sim 3\%/\sqrt{E \pm} \sim 1\%$

## Features:

- Good energy resolution
- > 3D shower info. with limited readout channel
- Shower separation < 4 cm</p>

## Main issues for R&D


Jet reconstruction and PFA algorithm

Scintillation Glass HCAL Energy resolution  $\sim 40\%/\sqrt{E \pm} \sim 2\%$ Features:

Large sampling ratio at low cost

## Main issues for R&D

high density, high light yield, radiation hardness, production

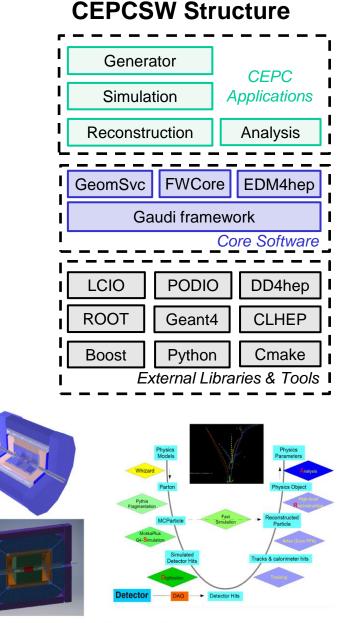




# **CEPC Software Migration to Key4hep**

**Key4hep:** an international collaboration with CEPC participation **CEPCSW:** a first application of Kep4hep – Tracking software **CEPCSW is already included in Key4hep software stack** 

https://github.com/cepc/CEPCSW


## Architecture of CEPCSW

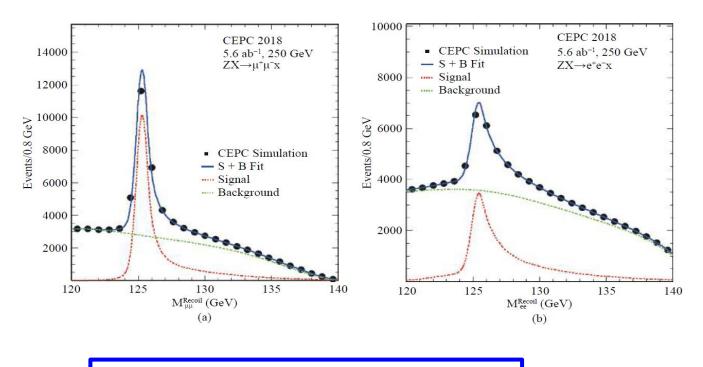
- External libraries
- Core software
- CEPC applications for simulation, reconstruction and analysis

## **Core Software**

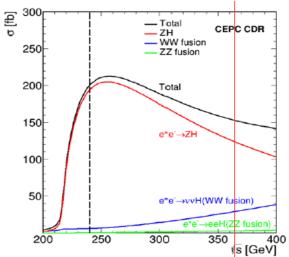
- Gaudi framework: defines interfaces of all software components and controls the event loop
- EDM4hep: generic event data model
- FWCore: manages the event data
- GeomSvc: DD4hep-based geometry management service

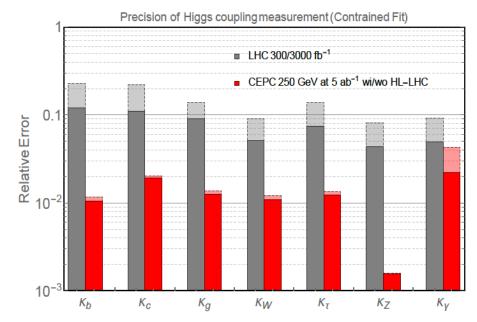
### Ref: Weidong Li's talk




Full simulation reconstruction Chain functional, iterating/validation with hardware studies




# **CEPC Physics Program (CDR)**




- CEPC can make detailed study of various physics processes
- Higgs bosons are detected via recoil mass of the Z, allowing for model independent & full investigation of the Higgs and related new physics that may reveal
- Very challenging events with missing neutrinos and jets are well reconstructed and identified



~300 Journal / arXiv papers





Chinese Physics C Vol. 43, No. 4 (2019) 043002



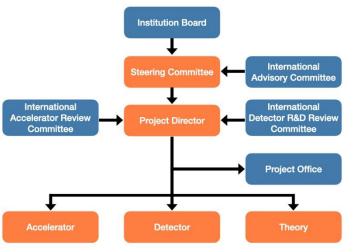
# **CEPC Physics Program**



- Precision Higgs, EW, flavor physics & QCD measurements at unprecedented precision
- BSM physics (e.g. dark matter, EW phase transition, SUSY, LLP, ...) up to ~ 10 TeV scale

|                               | $240{ m GeV},20~{ m ab}^{-1}$ |                | 360   | GeV, 1 $ab^{-1}$ |              |  |
|-------------------------------|-------------------------------|----------------|-------|------------------|--------------|--|
|                               | $\mathbf{ZH}$                 | $\mathbf{vvH}$ | ZH    | $\mathbf{vvH}$   | eeH          |  |
| inclusive                     | 0.26%                         |                | 1.40% | Λ                | $\backslash$ |  |
| $H \rightarrow bb$            | 0.14%                         | 1.59%          | 0.90% | 1.10%            | 4.30%        |  |
| $H \rightarrow cc$            | 2.02%                         |                | 8.80% | 16%              | 20%          |  |
| H→gg                          | 0.81%                         |                | 3.40% | 4.50%            | 12%          |  |
| H→WW                          | 0.53%                         |                | 2.80% | 4.40%            | 6.50%        |  |
| H→ZZ                          | 4.17%                         |                | 20%   | 21%              |              |  |
| $H \to \tau \tau$             | 0.42%                         |                | 2.10% | 4.20%            | 7.50%        |  |
| $H \rightarrow \gamma \gamma$ | 3.02%                         |                | 11%   | 16%              |              |  |
| $H \rightarrow \mu \mu$       | 6.36%                         |                | 41%   | 57%              |              |  |
| $H \rightarrow Z\gamma$       | 8.50%                         |                | 35%   |                  |              |  |
| $Br_{upper}(H \to inv.)$      | 0.07%                         |                |       |                  |              |  |
| $\Gamma_H$                    | 1.65%                         |                | 1.10% |                  |              |  |

| Observable            | current precision                | CEPC precision (Stat. Unc.)              | CEPC runs                                | main systematic          |
|-----------------------|----------------------------------|------------------------------------------|------------------------------------------|--------------------------|
| $\Delta m_Z$          | 2.1  MeV [37-41]                 | $0.1 { m MeV} (0.005 { m MeV})$          | Z threshold                              | $E_{beam}$               |
| $\Delta\Gamma_Z$      | $2.3 { m MeV} [37-41]$           | $0.025 { m ~MeV} (0.005 { m ~MeV})$      | Z threshold                              | $E_{beam}$               |
| $\Delta m_W$          | $9 { m MeV} [42-46]$             | $0.5 { m ~MeV} (0.35 { m ~MeV})$         | WW threshold                             | $E_{beam}$               |
| $\Delta\Gamma_W$      | 49 MeV [46–49]                   | $2.0 { m ~MeV} (1.8 { m ~MeV})$          | WW threshold                             | $E_{beam}$               |
| $\Delta m_t$          | $0.76  { m GeV}  [50]$           | $\mathcal{O}(10)~{ m MeV^a}$             | $t\bar{t}$ threshold                     |                          |
| $\Delta A_e$          | $4.9 \times 10^{-3}$ [37, 51–55] | $1.5{	imes}10^{-5}~(1.5{	imes}~10^{-5})$ | $Z$ pole $(Z \to \tau \tau)$             | Stat. Unc.               |
| $\Delta A_{\mu}$      | $0.015 \ [37, 53]$               | $3.5{	imes}10^{-5}~(3.0{	imes}~10^{-5})$ | $Z$ pole $(Z \to \mu \mu)$               | point-to-point Unc.      |
| $\Delta A_{	au}$      | $4.3 \times 10^{-3}$ [37, 51–55] | $7.0{	imes}10^{-5}(1.2{	imes}10^{-5})$   | $Z$ pole $(Z \to \tau \tau)$             | tau decay model          |
| $\Delta A_b$          | $0.02 \ \ [37, \ 56]$            | $20{	imes}10^{-5}~(3{	imes}10^{-5})$     | Z pole                                   | QCD effects              |
| $\Delta A_c$          | $0.027 \ [37, 56]$               | $30{	imes}10^{-5}~(6{	imes}10^{-5})$     | Z pole                                   | QCD effects              |
| $\Delta \sigma_{had}$ | 37  pb [37-41]                   | $2 {\rm \ pb} (0.05 {\rm \ pb})$         | Z pole                                   | lumiosity                |
| $\delta R_b^0$        | $0.003 \ [37, 57-61]$            | $0.0002~(5{	imes}10^{-6})$               | Z pole                                   | gluon splitting          |
| $\delta R_c^0$        | $0.017 \ [37, 57, 62-65]$        | $0.001~(2{	imes}10^{-5})$                | Z pole                                   | gluon splitting          |
| $\delta R_e^0$        | $0.0012 \ [37-41]$               | $2{	imes}10^{-4}~(3{	imes}10^{-6})$      | Z pole                                   | $E_{beam}$ and t channel |
| $\delta R^0_\mu$      | 0.002 [37-41]                    | $1 \times 10^{-4} (3 \times 10^{-6})$    | Z pole                                   | $E_{beam}$               |
| $\delta R_{	au}^0$    | $0.017 \ [37-41]$                | $1{\times}10^{-4}~(3{\times}10^{-6})$    | Z pole                                   | $E_{beam}$               |
| $\delta N_{ u}$       | 0.0025 [37, 66]                  | $2{	imes}10^{-4}~(3{	imes}10^{-5}$ )     | $ZH \operatorname{run} (\nu \nu \gamma)$ | Calo energy scale        |


arXiv:2205.08553



# **CEPC** Team



## **CEPC Organization**



#### Table 7.2: Team of Leading and core scientists of the CEPC Name Brief introduction Role in the CEPC team The leader of CEPC, chair of the SC Yifang Wang Academician of the CAS, director of IHEP Professor of IHEP Xinchou Lou Project manager, member of the SC Yuanning Gao Academician of the CAS, head Chair of the IB, member of the SC of physics school of PKU Professor of IHEP Jie Gao Convener of accelerator group, vice chair of the IB, member of the SC Haijun Yang Professor of SJTU Deputy project manager, member of the SC Jianbei Liu Professor of USTC Convener of detector group, member of the SC Professor of USTC Convener of theory group, member Hongjian He Managemen team, eading scien Joao Guimaraes da Costa Professor of IHEE Convener of detector group Jianchun Wang Professor of IHEP Convener of detector group Yuhui Li Professor of IHEP Convener of accelerator group Chenghui Yu Professor of IHEP Convener of accelerator group Professor of IHEP Jingyu Tang Convener of accelerator group Professor of SJTU Convener of theory group Xiaogang He Jianping Ma Professor of ITP Convener of theory group

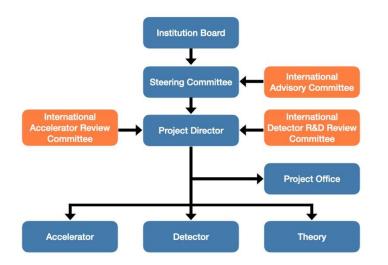
### Institution Board: 32 institutes, top universities/institutes in China

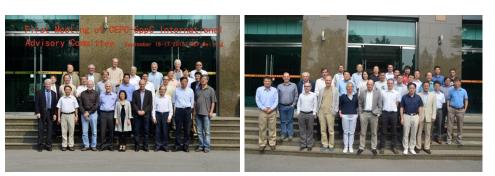
- Management team: comprehensive management experience at construction projects of BEPCII/CSNS/HEPS, and international projects of BESIII/Daya Bay/JUNO/...
- Accelerator team: fully over all disciplines with rich experiences at BEPCII, HEPS...
- Physics and Detector team: fully over all disciplines with rich experiences at BESIII, Daya Bay, JUNO, ATLAS, CMS, LHCb ...

|                                                |                        |                                     |                     |       | Number       | Sub-system                | Conveners                                   | Institutions                                           | Team (senior staff) |
|------------------------------------------------|------------------------|-------------------------------------|---------------------|-------|--------------|---------------------------|---------------------------------------------|--------------------------------------------------------|---------------------|
| Table 7.3: Team of the CEPC accelerator system |                        |                                     | -                   | 1     | Pixel Vertex | Zhijun Liang, Qun Ouyang, | CCNU, IFAE, IHEP, NJU,                      | $\sim 40$                                              |                     |
|                                                |                        | 5                                   |                     | _     |              | Detector                  | Xiangming Sun , Wei Wei                     | NWPU, SDU, Strasbourg,                                 |                     |
| Number                                         | Sub-system             | Convener                            | Team (senior staff) |       | 2            | Silicon                   | Harald Fox, Meng Wang,                      | IHEP, INFN, KIT, Lan-                                  | $\sim 60$           |
| 1                                              | Accelerator physics    | Chenghui Yu, Yuan Zhang             | 18                  |       |              | Tracker                   | Hongbo Zhu                                  | caster, Oxford, Queen Mary,                            |                     |
| 2                                              | Magnets                | Wen Kang, Fusan Chen                | 12                  |       |              |                           |                                             | RAL, SDU, Tsinghua, Bris-<br>tol, Edinburgh, Livepool, |                     |
| 3                                              | Cryogenic system       | Rui Ge, Ruixiong Han                | 11                  |       |              |                           |                                             | USTC, Warwick, Sheffield,                              |                     |
| 4                                              | SC RF system           | Jiyuan <mark>Z</mark> hai, Peng Sha | 1200                | 1.1   |              |                           |                                             | ZJU,                                                   |                     |
| 5                                              | Beam Instrumentati     | Jiyuan Zhai, Peng Sha               | + ~3000             | dete  | ect          | Oser is dS                | Tarrshi, Cur<br>Mingyr Dong, Huirong Or     | LEBC CONTROL DESY, IHEP,                               | $\sim 30$           |
| 6                                              |                        |                                     |                     |       |              |                           |                                             | INFN, NIKHEF, THU                                      |                     |
| 7                                              | Power supply ~ 4       | OO Bin from BE                      | ;ϒϹʹϧϐϲϽι           | III/J |              | Magnet                    | Felpen i Ning                               | IHEP                                                   | $\sim 10$           |
| 8                                              |                        |                                     |                     |       |              |                           |                                             | CALICE Collab., IHEP,                                  | $\sim 40$           |
| 0                                              | Injection & extraction |                                     | nce CEPC            | _ ac  | bbr          | ove                       | naijun Yang, Yong Liu                       | INFN, SJTU, USTC                                       |                     |
| 9                                              | Mechanical system      | Jianli Wang, Lan Dong               | 4                   | P     | 6            | Muon                      | Fabio Glacomeni, Liang Li,                  | FDU, IHEP, INFN, SJTU                                  | $\sim 20$           |
| 10                                             | Vacuum system          | Haiyi Dong, Yongsheng Ma            | 5                   | -     |              |                           | Xiaolong Wang                               |                                                        | a-dy                |
| 11                                             | Control system         | Ge lei, Gang Li                     | 6                   |       | 7            | Physics                   | Manqi Ruan, Yaquan Fang,                    | IHEP, FDU, SJTU,                                       | $\sim 80$           |
| 11                                             | Control system         | Ge lei, Galig Li                    | 0                   |       |              |                           | Liantao Wang, Mingshui                      |                                                        |                     |
| 12                                             | Linac injector         | Jingyi Li, Jingru Zhang             | 13                  | _     |              |                           | Chen                                        |                                                        | 90.00               |
| 13                                             | Radiation protection   | Zhongjian Ma                        | 3                   |       | 8            | Software                  | Shengseng Sun, Weidong<br>Li, Xingtao Huang | IHEP, SDU, FDU,                                        | $\sim 20$           |
| Sum                                            |                        | 117                                 | -                   | Sum   |              | ~ 300                     |                                             |                                                        |                     |
| ~ 4111                                         |                        |                                     | L                   | -     |              |                           |                                             |                                                        |                     |

.....

Table 7.4: Team of the CEPC detector system


T




## **CEPC International Committees**



## **CEPC Organization**





| Name                 | Affiliation                           | Country          |
|----------------------|---------------------------------------|------------------|
| Tatsuya Nakada       | EPFL                                  | Japan            |
| Steinar Stapnes      | CERN                                  | Norway           |
| Rohini Godbole       | CHEP, Bangalore                       | India            |
| Michelangelo Mangano | CERN                                  | Switzerland      |
| Michael Davier       | LAL                                   | France           |
| Lucie Linssen        | CERN                                  | Holland          |
| Luciano Maiani       | U. Rome                               | San Marino       |
| Joe Lykken           | Fermilab                              | U.S.             |
| lan Shipsey          | Oxford/DESY                           | U.K.             |
| Hitoshi Murayama     | IPMU/UC Berkeley                      | Japan            |
| Geoffrey Taylor      | U. Melbourne                          | Australia        |
| Eugene Levichev      | BINP                                  | Russia           |
| David Gross          | UC Santa Barbara                      | U.S.             |
| Brian Foster         | Oxford                                | U.К              |
| Marcel Demarteau     | ORNL                                  | USA              |
| Barry Barish         | Caltech                               | USA              |
| Maria Enrica Biagini | INFN Frascati                         | Italy            |
| Yuan-Hann Chang      | IPAS                                  | Taiwan, China    |
| Akira Yamamoto       | КЕК                                   | Japan            |
| Hongwei Zhao         | Institute of Modern Physics, CAS      | China            |
| Andrew Cohen         | University of Science and Techbnology | Hong Kong, China |
| Karl Jakobs          | University of Freiburg/CERN           | Germany          |
| Beate Heinemann      | DESY                                  | Germany          |

**International Advisory Committees** 

### International Accelerator Review Committee

- Phillip Bambade, LAL
- Marica Enrica Biagini (Chair), INFN
- Brian Foster, DESY/University of Hamburg & Oxford University
- In-Soo Ko, POSTTECH
- Eugene Levichev, BINP
- Katsunobu Oide, CERN & KEK
- Anatolii Sidorin, JINR
- Steinar Stapnes, CERN
- Makoto Tobiyama, KEK
- Zhentang Zhao, SINAP
- Norihito Ohuchi, KEK
- Carlo Pagani, INFN-Milano

### International Detector R&D Review Committee

- Jim Brau, USA, Oregon
- Valter Bonvicini, Italy, Trieste
- Ariella Cattai, CERN, CERN
- Cristinel Diaconu, France, Marseille
- Brian Foster, UK, Oxford
- Liang Han, China, USTC
- Dave Newbold, UK, RAL (chair)
- Andreas Schopper, CERN, CERN
- Abe Seiden, USA, UCSC
- Laurent Serin, France, LAL
- Steinar Stapnes, CERN, CERN
- Roberto Tenchini, Italy, INFN
- Ivan Villa Alvarez, Spain, Santader
- Hitoshi Yamamoto, Japan, Tohoku
- IAC: global renowned scientists and top laboratory or project leaders who have ample experience in project management, planning, and execution of strategies, operating since 2015
   IARC & IDRC: leading experts of this field, provide guide to the project director



## **CEPC International Efforts**



### **ESPPU** input

### CEPC Input to the ESPP 2018 - Physics and Detector

**CEPC** Physics-Detector Study Group

### Abstract

The Higgs boson, discovered in 2012 by the ATLAS and CMS Collaborations at the Large Hadron Collider (LHC), plays a central role in the Standard Model. Measuring its properties precisely will advance our understandings of some of the most important questions in particle physics, such as the naturalness of the electroweak scale and the nature of the electroweak phase transition. The Higgs boson could also be a window for exploring new physics, such as dark matter and its associated dark sector, heavy sterile neutrino, et al. The Circular Electron Positron Collider (CEPC), proposed by the Chinese High Energy community in 2012, is designed to run at a center-of-mass energy of 240 GeV as a Higgs factory. With about one million Higgs bosons produced, many of the major Higgs boson couplings can be measured with precisions about one order of magnitude better than those achievable at the High Luminosity-LHC. The CEPC is also designed to run at the Z-pole and the W pair production threshold, creating close to one trillion Z bosons and 100 million W bosons. It is projected to improve the precisions of many of the electroweak observables by about one order of magnitude or more. These measurements are complementary to the Higgs boson coupling measurements. The CEPC also offers excellent opportunities for searching for rare decays of the Higgs, W, and Z bosons. The large quantities of bottom-quarks, charm-quarks, and tau leptons produced from the decays of the Z bosons are interesting for flavor physics. The o perform posed for icepts can

the full arXiv: 1901.03170 and 1901.03169 full arXiv: 1901.03169 full and 1901.03169 full and the international organization of the CEPC the international CEPC team is to perform detailed technical design studies. Effective international

CLEPC team is to perform detailed technical design studies. Effective international collaboration would be crucial at this stage. This submission for consideration by the ESPP is part of our dedicated effort in seeking international collaboration and support. Given the importance of the precision Higgs boson measurements, the ongoing CEPC activities do not diminish our interests in participating in the international collaborations of other future electron-positron collider based Higgs factories.

### **Snowmass input**

Snowmass2021 White Paper AF3- CEPC

CEPC Accelerator Study Group<sup>1</sup>

### 1. Design Overview

### 1.1 Introduction and status

The discovery of the Higgs boson at CERN's Large Hadron Collider (LHC) in July 2012 raised new opportunities for large-scale accelerators. The Higgs boson is the heart of the Standard Model (SM), and is at the center of many biggest mysteries, such as the large hierarchy between the weak scale and the Planck scale, the nature of the electroweak phase transition, the original of mass, the nature of dark matter, the stability of vacuum, etc. and many other related questions. Precise measurements of the properties of the Higgs boson serve as probes of the underlying fundamental physics principles of the SM and beyond. Due to the modest Higgs boson mass of 125 GeV, it is possible to produce it in the relatively clean environment of a circular electron-positron collider with high luminosity, new technologies, low cost, and reduced power consumption. In September 2012, Chinese scientists proposed a 240 GeV Circular Electron Positron Collider (CEPC), serving two large detectors for Higgs studies and other topics as shown in Fig. 1. The ~100 km tunnel for such a machine could also host a *Super Proton Proton Collider* (SPCC) to reach energies well beyond the LHC.

The CEPC is a large international scientific project initiated and to be hosted by China. It was presented for the first time to the international community at the ICFA Workshop "Accelerators for a Higgs Factory: Linear vs. Circular" (HF2012) in Novemb

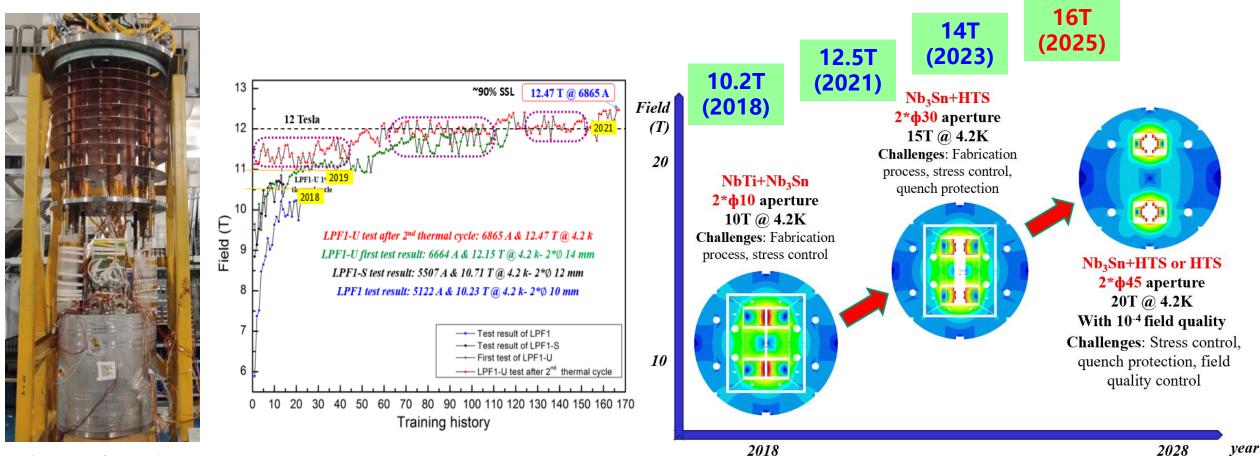
### White R Yellow F made. Ti has beet international for the second s

CEPC accelerator entered the phase of Technical Design Report (TDR) endorsed by CEPC International Advisory Committee (IAC). In TDR phase, CEPC optimization design with higher performance compared with CDR and the key technologies such as 650MHz high power and high efficiency klystron, high quality SRF accelerator technology, high precision magnets for booster and collider rings, vacuum system, MDI, etc. have been carried out, and the CEPC accelerator TDR will be completed at

<sup>1</sup> Correspondance: J. Gao, Institute of High Energy Physics, CAS, China Email: gaoj@ihep.ac.en



### > CEPC provides critical input to ESPPU & Snowmass as a major player


- > Team member actively participated intl. study (ESPPU and Snowmass committees) and Panel discussions
- CEPC attracts intensive international collaboration, ensuring that the CEPC design and technology are among the most advanced in the world.



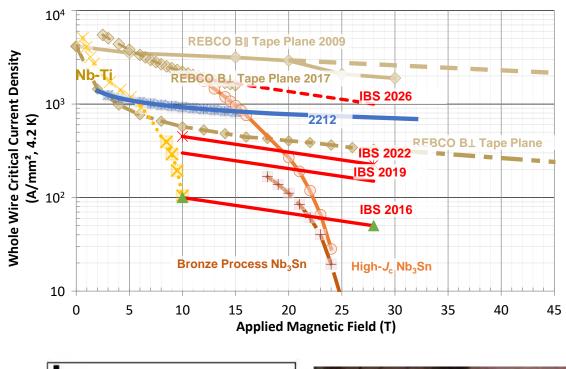
# SPPC R&D: HTS SC Magnet

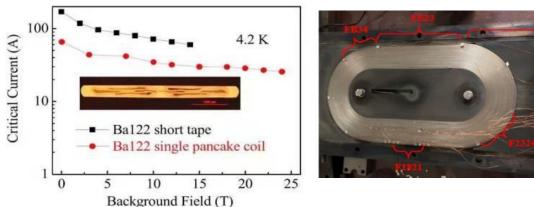


SppC 16 T Dipole: Nb<sub>3</sub>Sn 12~13 T + HTS 3~4 T Dual aperture superconducting dipoles fabricated in China reached 14T @ 4.2K in 2023. The next goal is 16-20T.



**Picture of LPF1-U** 





# SPPC R&D: HTS SC Magnet



Iron-based superconducting materials

- are very promising for high-field magnets
  - o Isotropic, metal
  - Cheap for raw materials and production
- Technology spin-off can be enormous
- Major R&D goals
  - $\circ$  High Jc: > 1000A/mm<sup>2</sup>@4.2K
  - Long cable: > 1000 m
  - o Low cost: < 5 \$/kA⋅m</p>
- A collaboration formed in 2016 by IHEP, IOP, IOEE, etc., and supported by CAS
  The world first: 1000m IBS cable, IBS solenoid coil (24T) → magnet





### 1<sup>st</sup> Iron-based Superconducting solenoid Coil at 24T