

Integrated luminosity measurement at ILC: What can be learnt for CEPC?

I. Božović-Jelisavčić

Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia Supported through Grant No. 7699827 Project IDEAS HIGHTONE-P

April 2024

Overview

- Very forward region(s)
- **Luminometer (impact on** \mathcal{L} **measurement)**
 - Design and performance
 - Metrology
- Beam-induced effects
- ECFA recommendations on \mathcal{L} measurement
- Summary

Very forward region

April 2024

Device at ILC

- High precision in polar angle measurement (~20 μrad)
- \Rightarrow Shower position and energy measurement on top of widely spread background
- \Rightarrow Compactness small Moliere radius

Impact of design and performance – shower position

Eur. Phys. J. C (2019) 79:579

Impact of design and performance – Moliere radius

$$0.9 = \int_0^{2\pi} d\varphi \int_0^{R_M} F_E(r) r dr$$

$$F_E(r) = A_C e^{-\left(\frac{r}{R_C}\right)^2} + A_T \frac{2r^{\alpha} R_T^2}{(r^2 + R_T^2)^2}$$

- Function *F_E* used to describe the transverse shower profile: Gaussian terms to describe shower core, Grindhammer-Peters term to describe the tail
- Very good agreement between data and Geant4 based MC

R_M=(**8.1**±0.1_{stat.}±0.3_{syst.}) mm

Demonstrated feasibility of constructing a compact calorimeter

Shower containment (R_M) also depends on the detector structure (i.e. air-gaps)

- Metrology depends on:
 - Where is the detector (s-axis or z-axis)
 - Way of counting (LEP-style, full FV)

ΔE - asymmetry (bias) in beam energies

8

April 2024

Metrology: What about the Beamspread?

Current BES: $\Delta L/L < 3.10^{-5}$ BES can be relaxed to ~ 600 MeV (currently 37 MeV \Leftrightarrow 0.08% E_{beam})

- Metrology depends on:
 - Where is the detector (s-axis or z-axis)
 - Way of counting (LEP-style, full FV)

CEPC z-axis, 91 GeV

 Δz_{IP} - axial IP position displacements

with respect to the luminometer

- Metrology depends on:
 - Way of counting (LEP-style, full FV)
 - LEP-style doesn't work for L-R symmetrical effects (also on the s-axis)

distance between luminometer halves: $\Delta I=200-300 \ \mu m$

CEPC 91 GeV, z-axis

April 2024

Conclusion on metrology

- CEPC:
 - There has been detailed study on CEPC metrology with the detector placed at s-axis <u>[Ivan Smiljanic, Ivanka Bozovic Jelisavcic, Goran Kacarevic, et al., Systematic uncertainties in integrated luminosity measurement at CEPC, JINST 17 P09014, 2022]</u>
 - And ongoing study with luminometer at the z-axis
- ILC: Ongoing full metrology review for luminosity measurement at all ILC energies
 - Luminometer positioned at s-axis offers LEP style counting reducing L-R sensitive systematics (ILC)
 - However, preliminary studies indicate that precision \mathcal{L} measurement at z-axis is also feasible (CEPC)
 - The major challenges remain (both ILC and CEPC):
 - Inner aperture of the luminometer (1 μm)
 - Asymmetric bias in beam energies (~ 7 MeV)
 - $\Delta(\sqrt{s})$ for the cross-section calculation ($\sigma_{Bh} \sim 1/s$), ~5 MeV

Beam-induced effects: EMD1 and EMD2

EMD1 – p_x -kick of the initial state EMD2 – focusing of the final state

- EMD1 not quantified at ILC
- EMD2 simulation dependent correction proposed [IBJ et al, 2013 JINST 8 P08012, arXiv:1304.4082v3]

 $\Delta \mathcal{L}/\mathcal{L} = x_{\mathcal{EMD}} \cdot \Delta \theta_{eff}$

- \$\color \mathcal{EMD}\$ can be determined experimentally
- $\Delta \theta_{eff}$ from simulation as the effective shift of luminometer due to EMD(2)
- $\Delta \theta_{eff} (1 \text{ TeV}) = 20 \ \mu \text{rad}$
- Uncorrected $\Delta \mathcal{L}/\mathcal{L} = 1.1 \cdot 10^{-3}$ at 1 TeV ILC
- Uncertainty of the correction $\sim 2 \cdot 10^{-4}$

Beam-induced effects: EMD1 and EMD2

EMD1 – p_x-kick of the initial state EMD2 – focusing of the final state

- EMD1 quantified at CEPC
- EMD2 ongoing study

- As shown for other colliders (i.e. ILC and FCCee), the EMD1 effect on $\Delta \mathcal{L}/\mathcal{L}$ is reduced with asymmetric counting at s-axis
- x-angle effectively reduced for 140 μ rad ($\delta \alpha$), 70 μ rad per beam
- e⁺e⁻ system receives kick of ~5.8 MeV in x-direction, or ~2.9 MeV per particle in average
- p_x-kick is equivalent to a luminometer shift of ~60 μm along the x-axis
- **s-axis:** $\Delta \mathcal{L}/\mathcal{L} \approx 6.10^{-5}$ LEP-style counting, with symmetric in FV: $\Delta \mathcal{L}/\mathcal{L} \approx 4.10^{-3}$
- z-axis: $\Delta \mathcal{L}/\mathcal{L} \leq 10^{-4}$

Beam-induced effects: Beamstrahlung

- An issue at linear machines (correction of the luminosity spectrum)
- Pronounced at high \sqrt{s}
- 1. Longitudinal boost can be determined from experimental data ($\theta_{1,2}$)
- 2. Effective reduction of the cross-section can be found
- 3. Correction weight $w(\beta_{coll})$ can be applied on event-by-event basis
- 4. θ measurement in the luminometer better than 20 mrad

Source of uncertainty	$\Delta L/L$ (500 GeV)	$\Delta L/L$ (1 TeV)
Beamstrahlung + ISR^1	$-1.1 \cdot 10^{-3}$	$-0.7 \cdot 10^{-3}$
Beamstrahlung + ISR^2	$0.4 \cdot 10^{-3}$	$0.7 \cdot 10^{-3}$

1 = uncorrected, 2 = corrected

 $w(\beta_{coll}) =$

ECFA Focus Group(s) recommendations for $\mathcal L$ measurement

Focus topics for the ECFA study on Higgs / Top / EW factories, arXiv:2401.07564v2 [hep-ph]

- Systematics for Bhabha measurement at very small angles is numerous and complex
- Main challenges comes from metrology and beam-induced effects
- Often one relies on polar angle measurement in the luminometer

Calls for alternative central process like di-photon or di-muon production

- Limited statistical precision (in the central region): 10⁻⁵ (10 ab⁻¹, Z-pole),
 - 4 · 10⁻⁴ (5 ab⁻¹, 250 GeV)
- Bhabha as background (100 times larger cross-section, to be reduced by a factor 10⁶)
- 50 μrad for the detector acceptance
- Calibration

<u>G. Wilson, PLUG-Cal: Precision Luminosity</u> <u>Ultra-Granular Calo, ECFA meeting,</u> <u>Paestum, Italy, 2023</u>

Summary

- ILC has a past of extensive simulation studies on integrated luminosity measurement that may provide guidelines for future Higgs factories
- FCAL R&D Collaboration has demonstrated in prototype a feasibility of the compact calorimetry for the very forward region of an e⁺e⁻ collider
- The main difference in metrology w.r.t. CEPC comes in detector positioning (z-axis) and (consequently) the way of Bhabha counting
- Preliminary studies at CEPC indicate that no effect seems to be more critical at z-axis (than at the s-axis)
- Identified challenges from metrology: inner aperture of the luminometer (1 μ m), and asymmetric bias in beam energies (~ 10 MeV), and Bhabha production cross-section calculation ($\Delta(\sqrt{s}) \sim 5$ MeV, hadronic vacuum polarization)
- Presence of numerous and complex systematics (for low-angle Bhabha measurements) at future Higgs factories calls for novel ideas both for instrumentation of the very forward region and alternatives to Bhabbha scattering
- Ongoing work both at ILC, CEPC (and FCCee) with open questions identified by the ECFA LUMI Focus Topic

Systematic uncertainties on Moliere radius Eur. Phys. J. C (2019) 79:579

- Uncertainty of the measured efficiency of the signal identification ±0.16 mm
- Uncertainty of the particle impact position ±0.13 mm
- Misalignment of detector planes ±0.08 mm
- Uncertainty due to bad channels ±0.14 mm
- Noise uncertainty negligible
- Calibration uncertainty of 5% for the APV read-out ±0.14 mm

