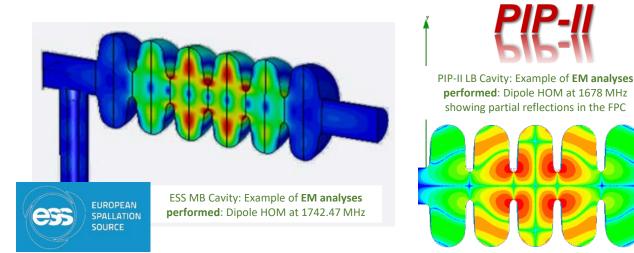
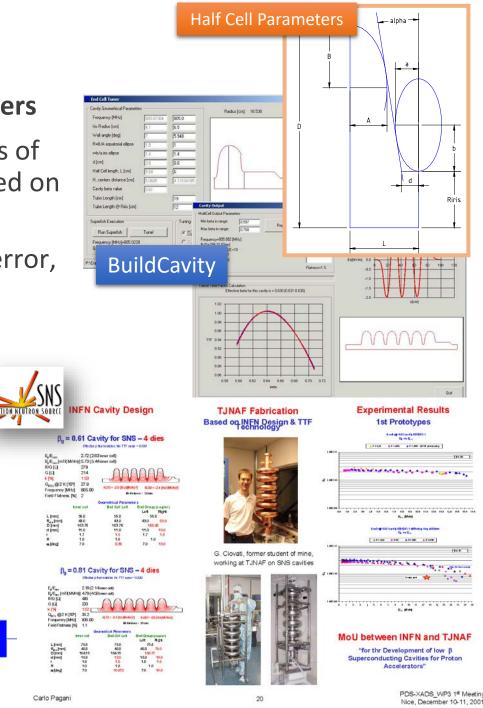

SRF activities in INFN

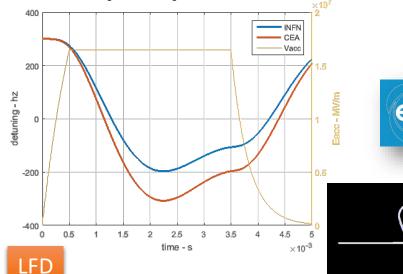
Michele Bertucci INFN Milano – LASA

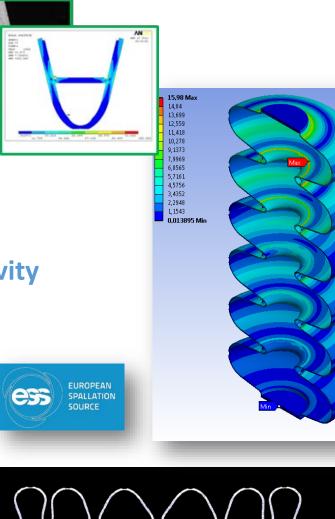
Outline


- History of LASA-INFN activites
- LASA expertises:
 - Electromagnetic and mechanical design, surface treatments, prototype production, cavity test and diagnostics, series production. Cryomodules, tuners, magnetic shields
- Main projects:
 - The past: E-XFEL
 - The present: ESS
 - The future: PIP-II
- R&D activities:
 - high Q/high G
 - New criostat design


LASA SRF Group: expertise and experience in SRF

Cavity – Electromagnetic Design

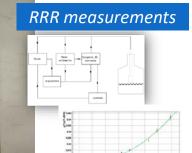

- Full parametric model in terms of **7 geometrical parameters**
- We built a 2D parametric tool BuildCavity for the analysis of the cavity shape on the electromagnetic parameters based on SUPERFISH
- A multicell cavity is then built minimizing Field Flatness error, compute β and TTF as well as final performances
- The 2D model constitutes the basis for further 3D simulations (HFSS, CST) for HOMs, multipacting, field emission considerations



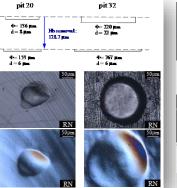
Cavity – Mechanical Design

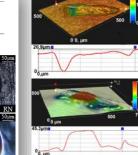
- The **EM design** is **transferred** to **mechanical analysis** (**iterative loop**) for estimating critical parameters as:
 - Ring radius
 - Stiffness
 - Tuning sensitivity
 - Vacuum sensitivity
 - Lorentz Force Detuning (LFD)
 - PED, ASME compliance
- Developed specific tool Mecavity

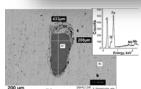
Mechanical Parameters	INFN design	
Cavity wall thickness (mm)	4.2	
Stiffening ring radius (mm)	70	Conservation of the second
Internal volume (1)	69	
Cavity internal surface (m ²)	1.8	
Stiffness (kN/mm)	1.7	
Tuning sensitivity K _T (kHz/mm)	205	X
Vacuum sensitivity K_V - $k_{ext} \sim 21 \text{ kN/mm} (\text{Hz/mbar})$ -	-8	
LFD coefficient K_L - $k_{ext} \sim 21 \text{ kN/mm} (\text{Hz/(MV/m)}^2)$ -	-1.8	~

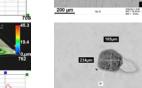


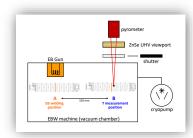
Cavity – Nb studies and characterization

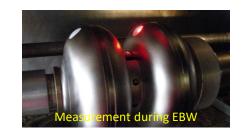

- **Nb quality is critical** for the final cavity performances:
 - Mechanical properties (grain size, hardness, thickness, etc.)
 - Chemical composition (elements and gas contents)
 - **RRR** (Residual Resistance Ratio)
 - Surface defects (scratches, marks, grease, etc.)
 - Foreign materials (ECS Eddy Current Scanning)
 - Traceability (pressure vessel code)
- Studies and tools developed:
 - Treatment studies (BCP/EP) of defect evolution on Nb samples
 - Final roughness (Ra) of Nb surface
 - RRR measurements set-up
 - Experience on FG and LG Nb
 - **EBW** (Electron Beam Welding) **studies**

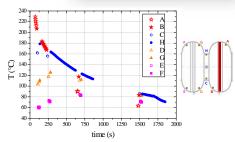


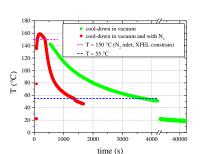


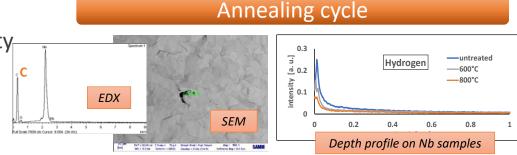


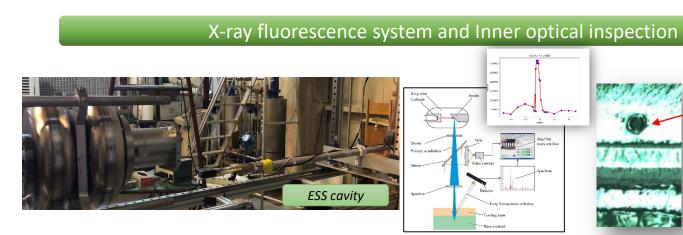


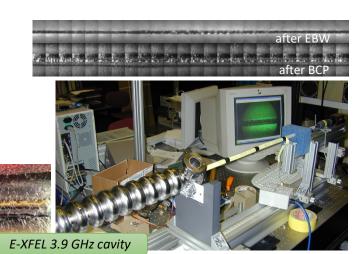





200 µm

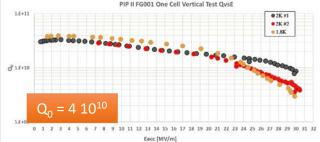


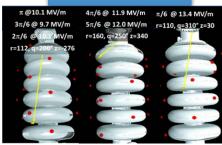




Cavity – Thermal and Surface treatments

- Once the mechanical production is complete, **thermal** and **surface treatments** play a crucial role in the **cavity preparation** to reach the **final performances**.
- Thermal treatments for stress release, de-hydrogenation, performance improvement:
 - Vacuum quality (RGA Residual Gas Analysis), pressure and temperature control, RRR
- Surface treatments for proper finishing and cleaning of the inner surface exposed to RF:
 - BCP (Buffered Chemical Polishing) and EP (Electro Polishing)
- Studies and tools developed:
 - Depth profile and SEM/EDX for process optimization and quality
 - Acid flow **simulation** and **test bench** for process improvement
 - Temperature and thickness evolution during BCP/EP
 - Inner visual inspection set-up for surface finishing check
 - X-ray fluorescence set-up for foreign materials analysis (non-destructive diag.)




Cavity – Cold VT at LASA

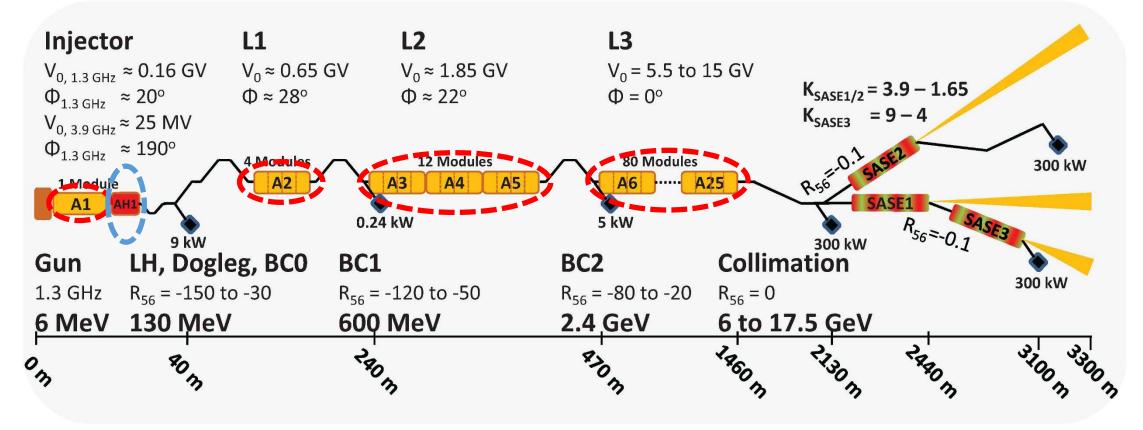
• Clean Room and UPW

- Ultra-Pure Water plant
- ISO4-7 clean room, HPR system
- Qualified Slow Pumping Slow Venting system
- Cryostat: ϕ 700 mm, 4.5 m length, losses ~ 1 W @ 2 K
- Residual magnetic field: < 8 mG (single shield)
 - Single μmetal external shield and, second cryogenic shield (Cryoperm) installed
- Sub-cooling system:
 - Cooling power: ~ 60 W @ 2 K
 - Lowest temperature 1.5 K.
 - Direct filling at 2 K
- **RF capability:** 500 to 3900 MHz
- Dedicated inserts with several diagnostics:
 - 2nd sound detectors for quench localization
 - cryogenic photodiodes
 - fast thermometry
 - fluxgates/AMR sensors for magnetic mapping
- X-ray counter and X-ray Nal spectrometer

Second Sound

Internal Magnetic Shield

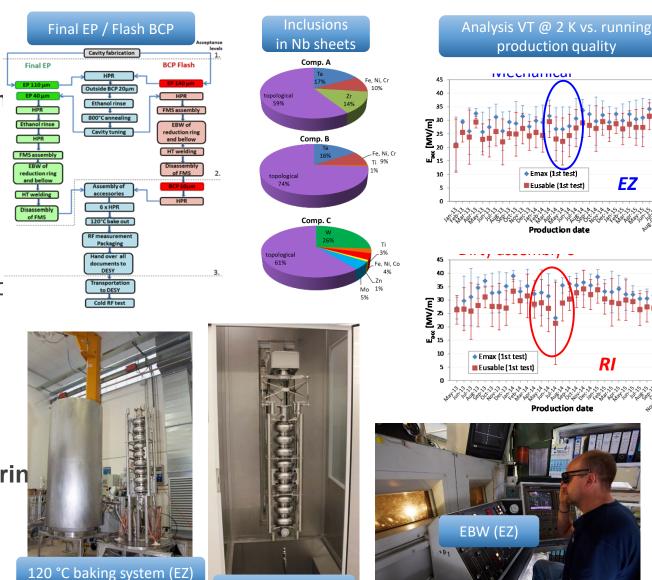
From prototypes to series production


- Large projects requirements:
 - Large number of components (cavities, cryomodule, ancillaries), massive number of high quality Nb sheets
 - Process optimization (industrialization) for high reproducibility and reliability
 - High production rate
- Laboratory resources:
 - **not able to manage** large numbers in term of quality, man-power, optimized cost, scheduling respect, infrastructures, etc.
- Criticalities, warnings (mainly for cavities):
 - Optimization of components design: feasible for the production and for repairing action
 - Stable and feasible preparation process: no R&D during series production -> high risk of delays!
 - Long production cycle: from mechanical production to final steps some months -> risk of several defective cavities and a long and expensive recovery process
 - High Quality Control (QA/QC plan) is a must: diagnostic of large number of parameters during all production steps (failures mitigation)
 - Preventive maintenance on plants: mitigation of possible faults

European XFEL

Italian in-kind contribution:

- 1.3 GHz: 320 cavities, 42 cryomodules, QC 800 tuners
- 3.9 GHz: 1 cryomodule, 20 cavities (blade tuners, He-tanks, magnetic shields)

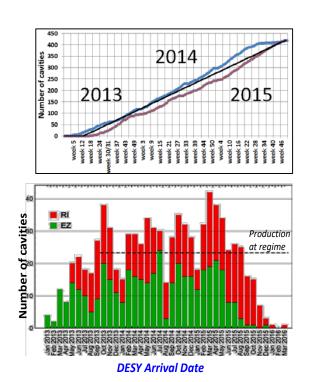

European XFEL: 1.3 GHz series cavity

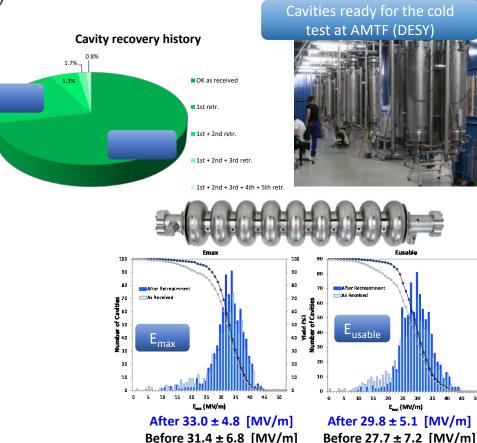
Purposes:

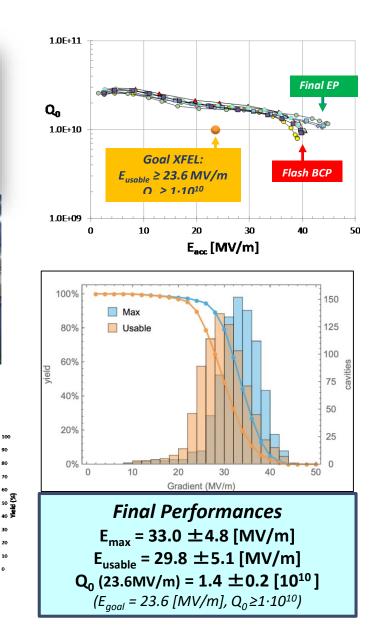
- 800 SC cavities, 3 Nb suppliers, 2 industries, 2 recipes (Final EP/ Flash BCP)
- Average usable E-XFEL gradient
 - Q₀=1x10¹⁰ @ 23.6 MV/m, X-Rays <1x10⁻² mGy/min
- Delivery rate about 8 CVs/week

How it worked:

- Materials and vendors qualification (Nb)
- Definition of production specs (2 recipes), PED 4.3 compliant (prototypes, TESLA experienc
- Cavity producers qualification (mechanical)
- Technology transfer to industries
- Grown and qualification of insfrastrucutes
- Qualification of the transferred technology
- Set-up of the «external» QA/QC at industries
- Series cavities production: continuos monitorin of key parameters
- Prompt feedback of the production quality (analysis of VT vs. key parameters)

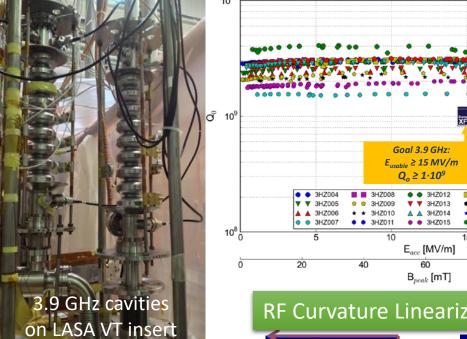


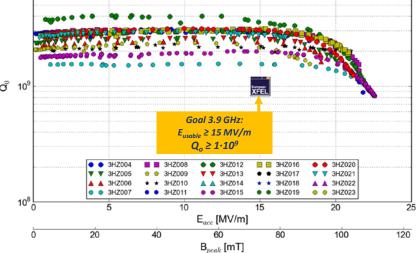

HPR cabinet (RI)


European XFEL: 1.3 GHz series cavity results

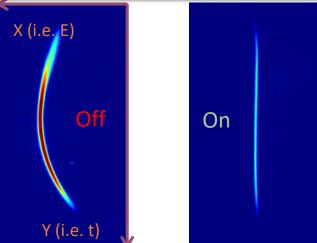
Results:

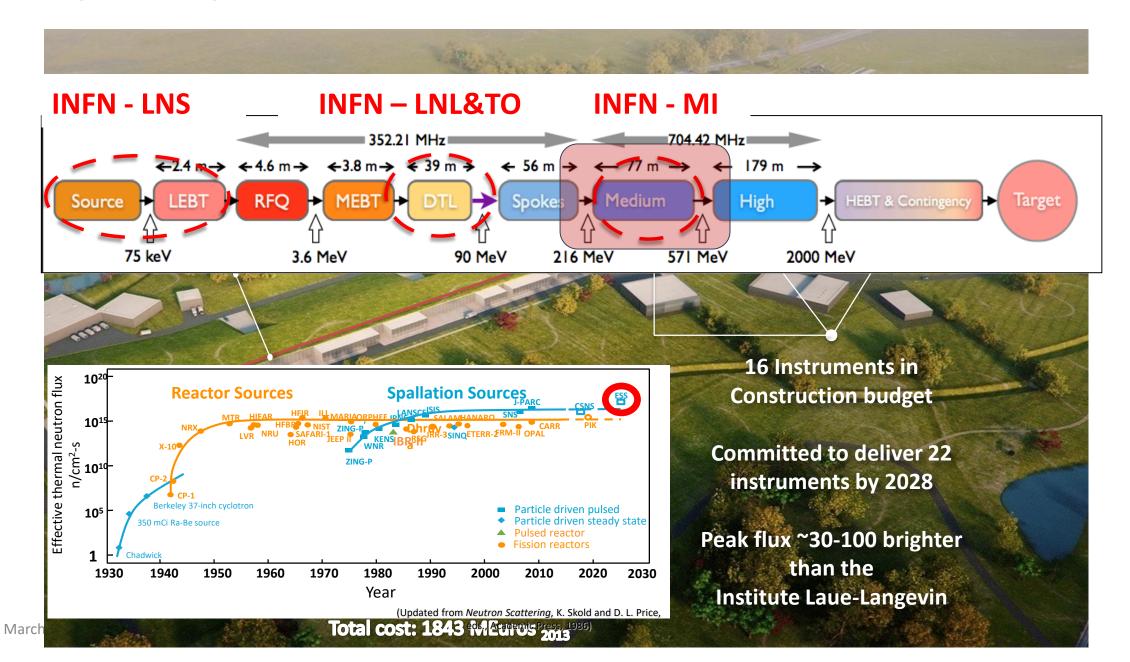
- Accepted Cavities as Delivered: ≈ 70% (over 800)
- After Additional Treatments (mainly HPR): all cavities accepted
- Rejected Cavities (replaced by companies): 8 (1%)
- In total 3 years (2013-2015)


European XFEL: 3.9 GHz cavity and cryomodule results

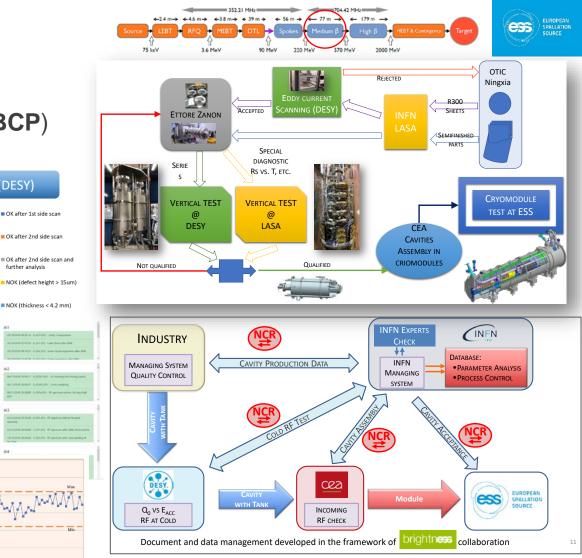


Results:


- Accepted Cavities as Delivered: 85% of 20 overall
- After Additional Treatments (only HPR): all accepted
- Rejected Cavities: none
- Delivery rate: **2 cavs/3 weeks**


RF Curvature Linearization by AH1

European Spallation Source


ESS: 704.4 MHz series cavity

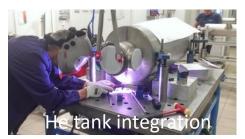
Purposes:

- 36 (+2) SC cavities, 1 Nb suppliers, 1 industry, 1 recipe (BCP)
- ESS medium β (0.67) **Q**₀ = 5-10⁹ @ 16.7 MV/m

How it is working:

- Definition of Nb specs and QC (inspection at Nb vendor, ECS at DESY)
- Optimization of the RF and mechanical design
- **Definition of detailed production specs** (1 recipe), PED sound engineering practice compliant (3 prototypes)
- Infrastructures adapted to 704.4 MHz larger geometry and **qualified** (BCP treatment, new HPR head geometry, new inner inspection system, EP treatment, tuning machine)
- Definition of the QC plan -> QC improved for the interfaces between all partners (INFN-Industry-DESY-CEA-ESS)
- Management of all documentation (INFN Alfresco based) and database developed for analysis of key production parameters
- Cold VT at LASA for «special» cavities (more diagnostics available)

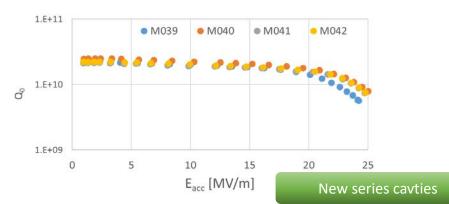
High Order Mode

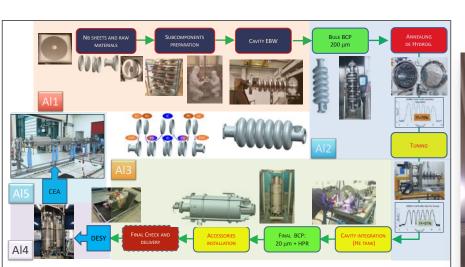

1742.466 MHz

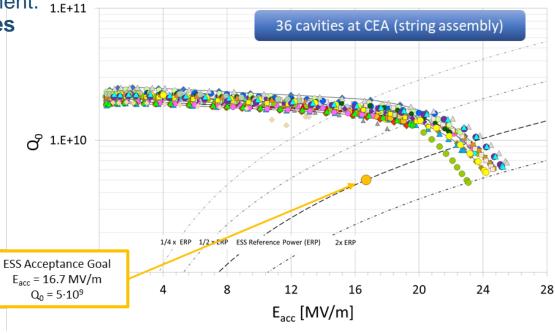
ECS Nb sheets (DESY)

further analysis

2.7%

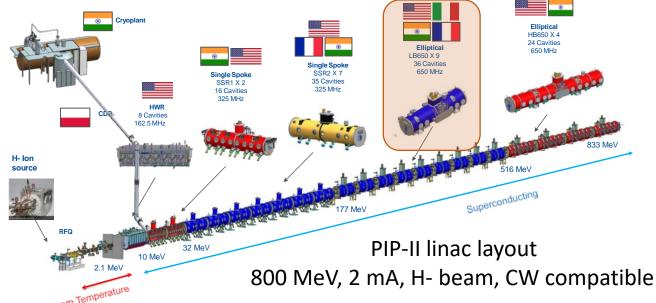



ESS: 704.4 MHz series cavity results Results:


- Cavities at CEA for string assembly (cryomodule): 36 (+1 spare)
- Accepted Cavities as Delivered: 27
- Recovered after Additional Treatments
 - HPR: 3; EP: 3
- Further 4 cavities produced (EP cycle):
 - Now integrated in cryomodule 9 @ ESS
- Cavities in quarantine: 5

Recovery strategy:

- HPR improved to better fit the cell shape (new head), EP adapted to ESS shape for surface treatment: 1.E+11
 -> performance improvement of MP/FE limited cavities
- rotating BCP on integrated cavities:
 -> some performance improvement
- Risk mitigation with 4 new cavities produced:
 -> all cavities overcome ESS goal (EP process)


ess

INFN in-kind contribution to PIP-II

INFN LASA provided a *novel RF design for the LB650 cavities*, compliant to Fermilab technical interfaces and specifications (outstanding Q_0 requirements).

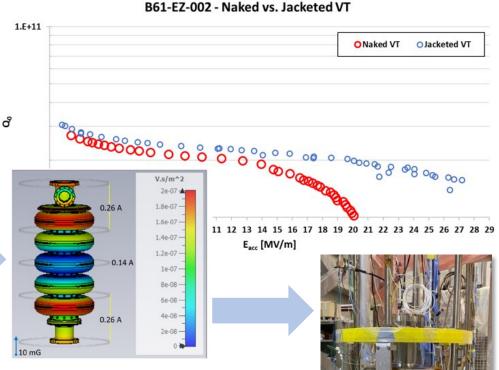
INFN-LASA contribution will cover the needs of LB650 section:

- 2 proto cavities to validate processing and tech. transfer
- **38 SC cavities** required to equip 9 cryomodules with 2 spares, delivered as ready for string assembly.
- Qualification via vertical cold-test provided by INFN through a qualified cold-testing infrastructure acting as a subcontractor
- Compliance to the PIP-II System Engineering Plan

PIP-II LB650 Project Specifications		
Acc. Gradient	16.9 MV/m	
Q ₀	2.4 10 ¹⁰	
RF rep rate	20 Hz to CW	
Beta	0.61	

INFN Deliverable Components	Acceptance Early Date
LB Jacketed Cavities (Batch 1 - Qty 4) and Pre-Series (Qty 2)	Jun-2025
LB Jacketed Cavities (Batch 2 - Qty 4)	Aug-2025
LB Jacketed Cavities (Batch 3 - Qty 4)	Oct-2025
LB Jacketed Cavities (Batch 4 - Qty 4)	Dec-2025
LB Jacketed Cavities (Batch 5 - Qty 4)	Feb-2026
LB Jacketed Cavities (Batch 6 - Qty 4)	Apr-2026
LB Jacketed Cavities (Batch 7 - Qty 4)	Jun-2026
LB Jacketed Cavities (Batch 8 - Qty 4)	Sep-2026
LB Jacketed Cavities (Batch 9 - Qty 4)	Oct-2026

LB650 on-going activities at INFN


R&D towards high Q₀ and preparation for transfer to industry

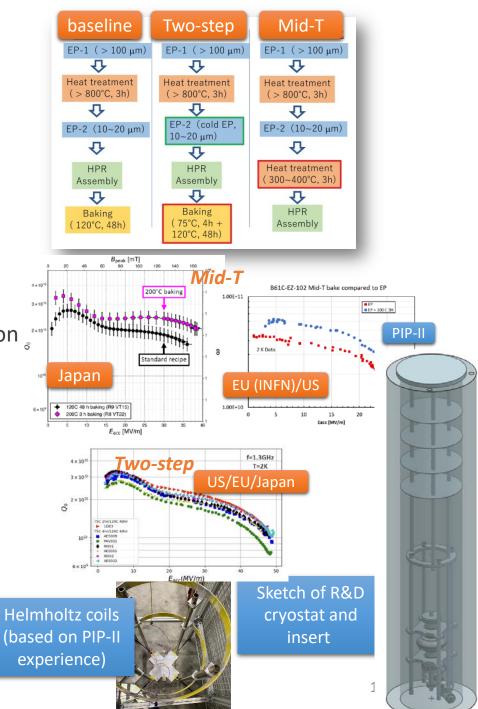
- Prototypes to develop proper surface treatments
 - B61-EZ-001 jacketed and tested at FNAL
 - B61-EZ-002 jacketed and tested at LASA
 - B61S-EZ-001 single cell treated and tested at FNAL
 - B61S-EZ-002 treated, jacketed and tested at LASA
 - B61S-EZ-003 single cell processed and tested at LASA
- Develop diagnostic for process control
- Analytical Field-Emission model
- Cavity transport boxes developed; prototypes built
- Prepare LASA test station for high Q₀ measurements
 - Lower residual magnetic field, Helmholtz coils
 - Faster cool-down rate across SC transition

Main procurements in view of the series production

- **RRR300 Nb** tender: 1st batch inspected in Oct. 23 and delivered, next Eddy Current Scanning.
- Agreement with DESY in progress for Eddy current scanning and series cavity vertical tests
- **Cavity manufacturing, treatment and preparation**: CFT and selection closed, waiting for final awarding.

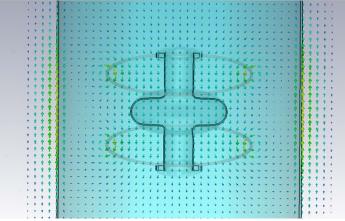
INFN High-Q/High-G R&D activities

Foreseen activity (3 years):

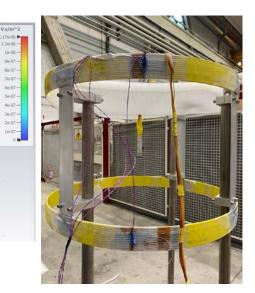

- Surface treatments development for reaching High-Q/High-G perfomances (single-cells)
- Industrialization: from single to multicell cavity
- R&D on cavity ancillaries (tuner, magnetic shield, etc,)

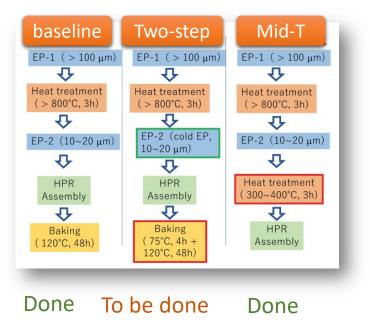
R&D for High-Q/High-G cavities :

- 1-cells 1.3 GHz: surface and thermal treatments development & qualification
 - E-XEFL (baseline), Mid-T, two-step baking
 - Cold VT (qualification) at LASA and in other labs (results validation)
- 9-cells 1.3 GHz: industrialization (9-cells) of the developed process

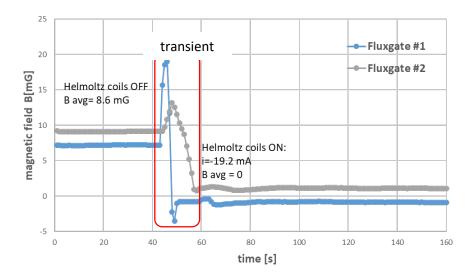

Upgrade of LASA VT system:

- New cryostat dedicated to R&D:
 - Design specifically for R&D on TESLA type single- and multi-cell cavities
 - Much faster overall work cycle compared to main cryostat
 - Active B-field compensation by design

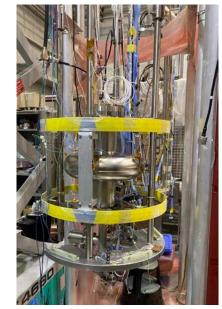



INFN High-Q/High-G R&D: experience on PIP-II LB650 single-cells

- The same recipes foreseen for the 1.3 GHz cavities are currently carried out on the PIP-II LB650 single cell prototypes
- This allows a real-time optimization of treatment parameters (EP, furnace for baking, HPR,....)



Coil field + residual field CST simulation



Field cancellation during cooldown

PIP-II Vertical insert with Helmoltz coils

Sinergies: ITN e EAJADE

• ILC Technology Network (ITN), 2-4 years

derived from ILC IDT (ILC International Development Team) to support pre-lab technological priorities as identified by the International Expert Panel

- March '23: budget approved by Japan; KEK-CERN agreement: signed in July 2023
- INFN Milano LASA involved in ILC SRF activities (R&D and industrialization of 1.3 GHz cavities)
- Activities foreseen in 2023-2026
 - Treatments targeted to ILC goal (single and 9-cell cavities) towards industrialization with qualified vendors
 - Harmonization of pressure vessel codes (PED/ASME/HPGS)
 - Fine Grain and Mid Grain Nb studies for single and 9-cell cavities -> in view of the cost reduction
 - Assembly at KEK of an ILC cryomodule with 1 EU cavity, 1 US cavity and 6 Japan cavities

• EAJADE, 4 years

European Commissi

Marie Skłodowska-Curie Actions Staff Exchanges

Staff exchange network for accelerator R&D within elementary particle physics

- Exchange between:
 - EU labs/univerisity and US-Japan labs/universities
 - EU labs/univeristy and EU industries
- started in March 2023, 4 years duration
- Six WPs

• INFN responsibility:

• WP2 lead beneficiary L. Monaco (*State-of-the-art high-gradient, high-efficiency, reduced-cost radio-frequency structures and power Sources*)

Item	Parameters		
C.M. Energy	250 GeV		
Length	20km		
Luminosity	1.35 x10 ³⁴ cm ⁻² s ⁻¹		
Repetition	5 Hz		
Beam Pulse Period	0.73 ms		
Beam Current	5.8 mA (in pulse)		
Ream size (v) at FF	7.7 nm@250Ge\/		
SRF Cavity G.	31.5 MV/m (35 MV/m)		
Q ₀	Q ₀ = 1x10 ¹⁰		
ILC cavity Go			

Conclusive remarks

- LASA is involved since several years in the field of SRF
 - Cavity design (EM and mechanical), prototyping, study of material and surface treatments, vertical test in the LASA facility. Beyond cavities: cryomodule installation, tuner, magnetic shields,...
- LASA contributes to the series production of cavities for acceleration of electrons (E-XFEL) and protons (ESS, PIP-II)
- LASA is devoted to R&D activities for the development of surface treatments for high-Q/high-G performances in view of future colliders
 - Study and industrialization of cutting-edge surface recipes
 - Project and development of a cryostat for prototypes with high magnetic hygiene and dedicated diagnostics to investigate possible performance limitations.