Contribution ID: 113 Type: not specified ## Underlying mechanism responsible for even-parity ground state and one-neutron halo of 11 Be (remote) Wednesday, 1 June 2022 10:40 (10 minutes) Using the axially deformed relativistic Hartree-Fock-Bogoliubov (D-RHFB) model, we explore the mechanism that triggers the novelties in 11 Be, i.e., the parity inversion and one-neutron halo which are well reproduced by the RHF Lagrangian PKA1. Following the evolution from spherical to large prolate shapes, it is illustrated that the evidently enhanced π -pseudo-vector (π -PV) and ρ -tensor (ρ -T) couplings in PKA1 are crucial for correctly describing even-parity ground state (GS) of 11 Be. By fragmentizing the even-parity orbit $1/2^+_2$, it is shown that the main fragment $1d_{5/2}$ strengthens the couplings with nuclear core to promise the even-parity GS, in which the ρ -T and π -PV couplings play an important role, and the other major one $2s_{1/2}$ remains weakly bound to form the halo in 11 Be. Furthermore, it is found that the attractive inherent correlations between the $2s_{1/2}$ and $1d_{5/2}$ fragments are essential not only in determining the parity inversion but also in stabilizing the one-neutron halo of 11 Be. Thus, an apparent picture of the deformed halo is achieved, which paves an efficient way to clarify the underlying mechanism responsible for the halos and other novelties in deformed unstable nuclei. Presenter: HUI LONG, Wen (Lanzhou University, China) Session Classification: Session 9: Selected methods for the study of exotic phenomena in nuclei