Microscopic description of triaxially deformed odd-odd proton emitters

$\underline{\text { P. Arumugam }}^{1}$, P. Siwach ${ }^{2}$, E. Maglione ${ }^{3}$ and L.S. Ferreira ${ }^{3}$
${ }^{1}$ Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, India
${ }^{2}$ Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{3}$ Centro de Física e Engenharia de Materiais Avançados CeFEMA, and Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, P1049-001 Lisbon, Portugal
Contact e-mail: arumugam@ph.iitr.ac.in

The nonadiabatic quasiparticle approach [1] to study the triaxially deformed odd-odd proton emitters is a powerful tool to unveil the structure of exotic nuclei near the proton drip line. The proton decay properties of nuclei in this region influence the path of the astrophysical $r p$-process [2, 3] significantly. We study these nuclei with the newly developed modified particle rotor model (MPRM) with two quasiparticles and a triaxial rotor. One of the major advantages of this approach is that the matrix elements of the coupled system explicitly carry the rotor's matrix element in the laboratory frame [4]. This provides the opportunity to utilize the rotor's experimental data, which in turn reduces the dependence on several adjustable parameters. The residual neutron-proton interaction is also considered within an appropriate formalism. The half-life of the proton emitter is calculated in a microscopic manner by coupling the parent and daughter wave functions. The information about the odd neutron is gathered from MPRM [4] which has been very successful in explaining the features of triaxially deformed odd-A proton emitters [5-6]. The configuration assignment of triaxially deformed odd-odd nuclei is done by looking into the rotational energies and the proton decay half-lives of the corresponding states, simultaneously. Important results in bringing out the necessity of a nonadiabatic approach while explaining the measured structure and decay data of 108 I , including the fine structure in 140 Ho and 144 Tm , will be discussed.

1. G. Fiorin, E. Maglione, and L.S. Ferreira, Phys. Rev. C 67, 054302 (2003).
2. H. Suzuki et al., Phys. Rev. Lett. 119, 192503 (2017).
3. K. Auranen et al., Phys. Lett B 792, 187 (2019).
4. P. Siwach, P. Arumugam, S. Modi, L.S. Ferreira and E. Maglione, J. Phys. G: Nucl. Part. Phys. 47, 125105 (2020).
5. P. Siwach, P. Arumugam, S. Modi, L.S. Ferreira and E. Maglione, Phys. Rev. C 103, L031303 (2021); Phys. Rev. C 105, L031302 (2022).
