Quantum Computing
 an introduction for computing scientists

CPPM, 3 February 2020, Marseille

Bogdan Vulpescu
Laboratoire de Physique de Clermont
Service Informatique

At CERN

- CERN OpenLab, "Quantum Computing for High Energy Physics Workshop" 5-6 November 2018, CERN https://indico.cern.ch/event/719844/ D-Wave, Rigetti, IBM, Google, Intel, Microsoft, ProjectQ, Strangeworks, ...
"A contribution to the particle physics strategy update 2018-2020" https://indico.cern.ch/event/765096/contributions/3295802/attachments/ 1785308/2906350/QC-HEP-2020.pdf

Quantum Computing for HEP

CERN openlab - a public-private partnership between CERN and leading companies driving ICT innovation - organised a highly successful workshop on this topic at CERN in November 2018, attended by more than 400 representatives of the HEP community and of major research laboratories, experts in IQCT and the leading companies working at the development of IQCT solutions.
It is the common consensus of the signees of this document that, given the projected deficit of HEP computing and the potential promise of QICT, the HEP community should invest in the exploration of these technologies.

At IN2P3

- Working Group at IN2P3 (within GT09) on quantum information technology: 6 September 2019, Michel-Ange, Paris (a report on the CERN workshop) https://indico.in2p3.fr/event/19662/
- "Prospectives CNRS/IN2P3 Calcul Algorithmes et Données"

17-18 October 2019, Clermont-Ferrand https://indico.in2p3.fr/event/19733/
https://webcast.in2p3.fr/container/journees-prospectives-calcul-algorithmes-etdonnees

- "Journées thématiques IN2P3 - Quantum computing: state of the art and applications"
2-3 December 2019, IPNO, Orsay
https://indico.in2p3.fr/event/19917/
CEA, Atos, ...

And at CNRS

- "Les débuts de l'ordinateur quantique: principes, promesses, réalisations et défis", by Pascale Senellart-Mardon (C2N, Center for Nanoscience and Nanotechnology)
14 January 2020, IJCLab, Orsay
https://indico.lal.in2p3.fr/event/5907

In Europe: Quantum Flagship https://qt.eu

The future is Quantum.

The Second Quantum Revolution is unfolding now, exploiting the enormous advancements in our ability to detect and manipulate single quantum objects. The Quantum Flagship is driving this revolution in Europe.

Summary of the talk

- Classical bits and classical computing
- Quantum mechanics and quantum bits (qubits)
- Manipulating qubit states, unitary errors
- Quantum gates and circuits
- Quantum teleportation
- Quantum Fourier Transformation
- Quantum cryptography
- IBM Q experience
- Classical bits and classical computing
- Quantum mechanics and quantum bits (qubits)
- Manipulating qubit states, unitary errors
- Quantum gates and circuits
- Quantum teleportation
- Quantum Fourier Transformation
- Quantum cryptography
- IBM Q experience

Semiconductors

their conductivity can be controlled by doping and gating with electric fields
a silicon crystal

The flip-flop circuit (a bi-stable circuit)

a device that can store a single bit of data (0 or 1)

Inverter $(0 \Rightarrow 1,1 \Rightarrow 0)$ with transistor-transistor logic (TTL)

NOT

Elementary logic gates: one-bit logic gates

$$
f:\{0,1\} \rightarrow\{0,1\}
$$

IDENTITY

$$
a=a
$$

Elementary logic gates: two-bit logic gates

$$
f:\{0,1\}^{2} \rightarrow\{0,1\}
$$

the AND gate:

$$
a \wedge b=a b
$$

a	b	$\mathrm{a} \wedge \mathrm{b}$
0	0	0
0	1	0
1	0	0
1	1	1

Elementary logic gates: two-bit logic gates

$$
f:\{0,1\}^{2} \rightarrow\{0,1\}
$$

the OR gate:

$$
a \vee b=a+b-a b
$$

a	b	$\mathrm{a} \vee \mathrm{b}$
0	0	0
0	1	1
1	0	1
1	1	1

Elementary logic gates: two-bit logic gates

$$
f:\{0,1\}^{2} \rightarrow\{0,1\}
$$

the XOR (exclusive OR) gate:

$$
a \oplus b=a+b \quad(\bmod 2) \quad \begin{array}{|c|c|c|}
\hline \mathrm{a} & \mathrm{~b} & \mathrm{a} \oplus \mathrm{~b} \\
\hline 0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\hline
\end{array}
$$

Elementary logic gates: two-bit logic gates

$$
f:\{0,1\}^{2} \rightarrow\{0,1\}
$$

the NAND (negated AND) gate:

$$
a \uparrow b=\overline{a \wedge b}=\overline{a b}=1-a b
$$

a	b	$\mathrm{a} \uparrow \mathrm{b}$
0	0	1
0	1	1
1	0	1
1	1	0

Elementary logic gates: two-bit logic gates

$$
f:\{0,1\}^{2} \rightarrow\{0,1\}
$$

the NOR (negated OR) gate:

$$
\begin{aligned}
a \downarrow b & =\overline{a \vee b}=\overline{a+b-a b} \\
& =1-a-b+a b
\end{aligned}
$$

a	b	$\mathrm{a} \downarrow \mathrm{b}$
0	0	1
0	1	0
1	0	0
1	1	0

A circuit for computing the sum (with carry bit)

Given the binary representations $a=\left(a_{n-1}, \ldots, a_{1}, a_{0}\right)$ and $b=\left(b_{n-1}, \ldots, b_{1}, b_{0}\right)$, the i-th bit of the sum is

$$
s_{i}=a_{i}+b_{i}+c_{i} \quad(\bmod 2)
$$

where c_{i} is the carry over from the sum $a_{i-1}+b_{i-1}+c_{i-1}$. The carry over is set to one if two or more of the input bits a_{i}, b_{i} and c_{i} are 1 and 0 otherwise. This circuit can be built with the following elementary gates: 2 AND, 1 OR, 2 XOR and 4 FANOUT.

Universal (classical) gates

Any function $f:\{0,1\}^{m} \rightarrow\{0,1\}^{n}$ can be constructed from the elementary gates:

AND, OR, NOT and FANOUT !

We say that AND, OR, NOT and FANOUT constitute a universal set of gates for the classical computation.

A smaller universal set is NAND and FANOUT:

OR can be obtained from NOT and AND: $a \vee b=\overline{\bar{a} \wedge \bar{b}}$ (De Morgan's identities)
and NOT can be obtained from NAND and FANOUT:

$$
a \uparrow a=\overline{a \wedge a}=1-a^{2}=1-a=\bar{a}
$$

here we have FANOUT and NAND

Classical reversible computing

It is possible top embed any irreversible function into a reversible function:
irreversible function: $f:\{0,1\}^{m} \rightarrow\{0,1\}^{n} \quad m>n$
reversible function: $\tilde{f}:\{0,1\}^{m+n} \rightarrow\{0,1\}^{m+n}$
defined such that: $\quad \tilde{f}(x, y)=\left(x,[y+f(x)]\left(\bmod 2^{n}\right)\right)$
where \mathbf{x} represents \mathbf{m} bits, while \mathbf{y} and $\mathbf{f}(\mathbf{x})$ represent \mathbf{n} bits. Since the embedding function is bijective, it will be reversible! So at the logic level it is possible, with the price of introducing more dimensions in the calculations (ancillary bits \mathbf{y}).

A simple reversible classical gate: the controlled-NOT (CNOT)

The exclusive-OR function (XOR):
The CNOT gate:

a	b	$\mathrm{a} \oplus \mathrm{b}$
0	0	0
0	1	1
1	0	1
1	1	0

a	b	a'	b^{\prime}
$\mathbf{0}$	0	$\mathbf{0}$	0
$\mathbf{0}$	1	$\mathbf{0}$	1
$\mathbf{1}$	0	$\mathbf{1}$	1
$\mathbf{1}$	1	$\mathbf{1}$	0

The circuit representation of the classical CNOT gate
the control bit:
the target bit:

two CNOT gates, applied one after the other:

$$
(a, b) \rightarrow(a, a \oplus b) \rightarrow(a, a \oplus(a \oplus b))=(a, b)
$$

so CNOT is self-inverse: $\quad(C N O T)^{2}=I \quad, \quad C N O T T^{-1}=C N O T$

If the target bit is set to $0(b=0)$ then CNOT becomes the FANOUT gate:

$$
(a, 0) \rightarrow(a, a)
$$

... but two-bit reversible gates are not enough for universal computation! We can not construct the NAND gate ...

Three-bit reversible gates: the Toffoli gate (controlled-controlled-NOT, or $\mathrm{C}^{2} \mathrm{NOT}$)

control bit [0]:
control bit [1]:
target bit [2]:

The Toffoli gate is a universal gate!

NOT: $\quad a=b=1, \quad c^{\prime}=\bar{c}$
AND: $\quad c=0, \quad c^{\prime}=a \wedge b$
OR: $\quad a \rightarrow \bar{a}, b \rightarrow \bar{b}, c=1, c^{\prime}=a \vee b$

- Classical bits and classical computing
- Quantum mechanics and quantum bits (qubits)
- Manipulating qubit states, unitary errors
- Quantum gates and circuits
- Quantum teleportation
- Quantum Fourier Transformation
- Quantum cryptography
- IBM Q experience

Quantum bits (qubits)

A qubit is a quantum object: a microscopic system whose state and evolution are governed by the laws of quantum mechanics. In order to keep a good resemblance with the classical bit, this system will be chosen to have only two possible states, corresponding to some (measurable) physical property.

The two states are orthogonal and any arbitrary state the system can be described as a linear combination (superposition) of those two states:

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \quad|\alpha|^{2}+\left|\beta^{2}\right|=1 \quad \alpha, \beta \in \mathbb{C}
$$

The 1st postulate of quantum mechanics

The state vector (or wave function) completely describes the state of the physical system.

The evolution in time of the state vector is governed by the Schrödinger equation:

$$
i \hbar \frac{d}{d t}|\psi(t)\rangle=H|\psi(t)\rangle
$$

(H is the Hamiltonian, a self-adjoint operator) the $6^{\text {th }}$ postulate

The coefficients α and β multiplying the vectors of the computational basis are functions of time:

$$
|\psi(t)\rangle=\alpha(t)|0\rangle+\beta(t)|1\rangle
$$

$\hbar \approx 6.626 \times 10^{-34}$ Joule \cdot sec
$i=\sqrt{-1}$

Vector algebra with qubits

Since we describe our space with two coordinates, we can write the two basis vectors:

$$
|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1}
$$

and their superposition in the state vector: $|\psi\rangle=\alpha\binom{1}{0}+\beta\binom{0}{1}=\binom{\alpha}{\beta}$
The vectors
of the computational
basis are normalized orthogonal vectors:

$$
\begin{aligned}
& \langle 0 \mid 0\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{1}{0}=1 \quad, \quad\langle 0 \mid 1\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\binom{0}{1}=0 \\
& \langle 1 \mid 0\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{1}{0}=0 \quad, \quad\langle 1 \mid 1\rangle=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{0}{1}=1
\end{aligned}
$$

The 2nd postulate of quantum mechanics

We associate with any observable a self-adjoint operator on the Hilbert space of the states. The only possible outcome of a measurement is one of the eigen-values of the corresponding operator (3 ${ }^{\text {rd }}$ postulate).
$\begin{aligned} & \text { A single-qubit operator can be represented by a } 2 \mathrm{x} 2 \text { matrix: } \\ & \text { (described within a given orthonormal vector base) }\end{aligned} \sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$

$$
\begin{aligned}
& \sigma_{z}|0\rangle=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{1}{0}=\binom{1}{0}=+1|0\rangle \\
& \sigma_{z}|1\rangle=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{0}{1}=\binom{0}{-1}=-1|1\rangle
\end{aligned}
$$

$|0\rangle$ and $|1\rangle$ are eigen-vectors of the operator σ_{z} with eigen-values " +1 " and " -1 "

The probability of a given measurement outcome (the $4^{\text {th }}$ postulate)

If we expand the state vector over the orthonormal basis formed by the eigen-vectors of the operator corresponding to the observable:

$$
|\psi(t)\rangle=\alpha(t)|0\rangle+\beta(t)|1\rangle
$$

then the probability that a measurement at time t results in outcome " +1 " or " -1 " is given respectively by:

$$
\begin{aligned}
& p_{+1}(t)=|\langle 0 \mid \psi(t)\rangle|^{2}=|\alpha(t)|^{2} \\
& p_{-1}(t)=|\langle 1 \mid \psi(t)\rangle|^{2}=|\beta(t)|^{2}
\end{aligned}
$$

Note: global phase factors $\left|\psi^{\prime}\right\rangle=e^{i \theta}|\psi\rangle$ do not affect physical predictions!

The quantified spin and the choice of the direction of the measurement

$$
\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The quantified spin and the choice of the direction of the measurement

The quantified spin and the choice of the direction of the measurement

The quantified spin and the choice of the direction of the measurement

$\sigma_{x}, \sigma_{y}, \sigma_{z}=$ Pauli matrices (operators), also $\sigma_{1}, \sigma_{2}, \sigma_{3}$

The eigen-vectors of the spin operators (Pauli) corresponding to eigen-values " +1 " and "- 1 "

Circuit symbol representation for a measurement

$$
\begin{aligned}
& |\psi\rangle=\alpha|0\rangle+\beta|1\rangle-\begin{array}{c}
\alpha \\
z
\end{array} \\
& |\psi\rangle=\alpha|0\rangle+\beta|1\rangle \longrightarrow \begin{array}{c}
\alpha \\
x
\end{array} \\
& |\psi\rangle=\alpha|0\rangle+\beta|1\rangle-\begin{array}{l}
\alpha \\
y
\end{array}
\end{aligned}
$$

Note: double line means that this is a classical information (a bit).

The 5th postulate of quantum mechanics

If a system is described by the state vector $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ and we measure σ_{z} obtaining the outcome (spin projection) +1 or -1 , then immediately after the measurement the state of the system is given by the eigen-vector corresponding to the eigen-value: $|0\rangle$ or $|1\rangle$ respectively.

The expected value of an observable will be ($4^{\text {th }}$ postulate):

$$
\left\langle\sigma_{z}\right\rangle=\sum_{n} s_{n} p_{n}=\sum_{n} s_{n}\langle\psi| P_{n}|\psi\rangle=\langle\psi|\left(\sum_{n} s_{n} P_{n}\right)|\psi\rangle=\langle\psi| \sigma_{z}|\psi\rangle
$$

from the outcome probabilities: $\quad p_{n}=\langle\psi| P_{n}|\psi\rangle$
with the projector operators: $\quad P_{1}=|0\rangle\langle 0| \quad, \quad P_{2}=|1\rangle\langle 1|$

Before the measurement of the z spin component

After the measurement

The Stern-Gerlach experiment

Force proportional to the gradient of the magnetic field

$$
F_{z}=\mu \frac{\partial B_{z}}{\partial z}
$$

The no-cloning theorem

Contrary to the classical case, it is not possible to clone (COPY or FANOUT) a generic quantum state.

The equivalent of this: $a<a_{a}^{a}$ does not exist in the quantum case.

It is impossible to build a machine that operates unitary transformations and is able to clone the generic state of a qubit.

This has important consequences and leads to interesting consequences like the possibility of doing quantum cryptography.

The possibility of cloning would also invalidate the uncertainty relation of Heisenberg because it would be possible to simultaneously measure with infinite precision two physical properties of the system on two identical copies of the same quantum state.

- Classical bits and classical computing
- Quantum mechanics and quantum bits (qubits)
- Manipulating qubit states, unitary errors
- Quantum gates and circuits
- Quantum teleportation
- Quantum Fourier Transformation
- Quantum cryptography
- IBM Q experience

Flipping a qubit using a constant magnetic field

The Schrödinger equation: $\quad i \hbar \frac{d}{d t}|\psi(t)\rangle=H|\psi(t)\rangle$

The time-evolution operator:

$$
|\psi(t)\rangle=U\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle \quad, \quad U\left(t, t_{0}\right)=\exp \left[-\frac{i}{\hbar} H\left(t-t_{0}\right)\right]
$$

and in this particular case U is a unitary operator: $\quad U U^{\dagger}=U^{\dagger} U=I$

The Hamiltonian of a spin interacting with a magnetic field is:

$$
H=-\mu \mathcal{H} \cdot \sigma \quad, \quad \mathcal{H}=\left(\mathcal{H}_{x}, \mathcal{H}_{y}, \mathcal{H}_{z}\right) \quad, \quad \sigma=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)
$$

Flipping a qubit with a constant magnetic field

Using the

$$
n=\frac{1}{\sqrt{\mathcal{H}_{x}^{2}+\mathcal{H}_{y}^{2}+\mathcal{H}_{z}^{2}}}\left(\mathcal{H}_{x}, \mathcal{H}_{y}, \mathcal{H}_{z}\right) \quad, \quad n=\left(n_{x}, n_{y}, n_{z}\right)
$$

$$
\alpha(t)=\frac{\mu t}{\hbar} \sqrt{\mathcal{H}_{x}^{2}+\mathcal{H}_{y}^{2}+\mathcal{H}_{z}^{2}}
$$

We obtain for the time-evolution operator this:

$$
U(t)=\left[\begin{array}{cc}
\cos \alpha+i n_{z} \sin \alpha & \left(n_{y}+i n_{x}\right) \sin \alpha \\
\left(-n_{y}+i n_{x}\right) \sin \alpha & \cos \alpha-i n_{z} \sin \alpha
\end{array}\right]
$$

Flipping a qubit with a constant magnetic field

For instance, with a magnetic field: $\quad \mathcal{H}=\left(\mathcal{H}_{x}, 0,0\right) \quad, \quad n=(1,0,0)$ We can flip the state $|0\rangle$ into the state $|1\rangle$:

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]=U\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{cc}
\cos \alpha\left(t_{01}\right) & i \sin \alpha\left(t_{01}\right) \\
i \sin \alpha\left(t_{01}\right) & \cos \alpha\left(t_{01}\right)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Which is fulfilled if:

$$
\cos \alpha\left(t_{01}\right)=0 \quad, \quad t_{01}=\frac{\pi \hbar}{2 \mu\left|\mathcal{H}_{x}\right|}
$$

Unitary errors

Any quantum computation is given by a sequence of quantum gates applied to some initial state:

$$
\left|\psi_{n}\right\rangle=\prod_{i=1}^{n} U_{i}\left|\psi_{0}\right\rangle
$$

If the errors are unitary (no coupling to the environment, but any realistic implementation of a unitary operation will involve some error, since unitary operators form a continuous set), instead of operators U_{i} we apply slightly different operators V_{i} :

$$
\left|\psi_{i}\right\rangle=U_{i}\left|\psi_{i-1}\right\rangle \quad \backsim \quad V\left|\psi_{i-1}\right\rangle=\left|\psi_{i}\right\rangle+\left|E_{i}\right\rangle
$$

Unitary errors

For instance, in the previous qubit flip example

$$
\text { instead of } \quad\left|\psi_{1}\right\rangle=|0\rangle \quad, \quad\left|\psi_{2}\right\rangle=U\left(t_{01}\right)\left|\psi_{1}\right\rangle=|1\rangle
$$

$$
\text { we will have } \quad\left|\psi_{2}^{\prime}\right\rangle=|1\rangle+\left(\epsilon_{0}|0\rangle+\epsilon_{1}|1\rangle\right)
$$

Back to the general case, after n iterations we obtain:

$$
\left|\widetilde{\psi_{n}}\right\rangle=\left|\psi_{n}\right\rangle+\left|E_{n}\right\rangle+V_{n} V_{n-1}\left|E_{n-2}\right\rangle+\cdots+V_{n} V_{n-1} \ldots V_{2}\left|E_{1}\right\rangle
$$

with a limit of the error: $\|\left|\widetilde{\psi_{n}}\right\rangle-\left|\psi_{n}\right\rangle \|<n \epsilon$
In the "classical" case we have: $\quad \sigma^{2}=\sum_{i=1}^{n} \sigma_{i}^{2} \rightarrow \sigma<\sqrt{n} \epsilon$

- Classical bits and classical computing
- Quantum mechanics and quantum bits (qubits)
- Manipulating qubit states, unitary errors
- Quantum gates and circuits
- Quantum teleportation
- Quantum Fourier Transformation
- Quantum cryptography
- IBM Q experience

Single-qubit gates $\sigma_{x}, \sigma_{y}, \sigma_{z}$
(Pauli operators)

$$
\begin{aligned}
\sigma_{x}|0\rangle & =|1\rangle \\
\sigma_{x}|1\rangle & =|0\rangle \\
\sigma_{y}|0\rangle & =i|1\rangle \\
\sigma_{y}|1\rangle & =-i|0\rangle \\
\sigma_{z}|0\rangle & =|0\rangle \\
\sigma_{z}|1\rangle & =-|1\rangle
\end{aligned}
$$

The Hadamard gate

$$
\begin{aligned}
& H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \equiv|+\rangle_{x} \\
& H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \equiv|-\rangle_{x} \\
& H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
\end{aligned}
$$

$$
|x\rangle-H \quad(-1)^{x}|x\rangle+|1-x\rangle \quad, \quad|x\rangle=\{|0\rangle,|1\rangle\}
$$

Transforms the
computational basis: $|0\rangle,|1\rangle \rightarrow|+\rangle_{x},|-\rangle_{x}$

The exponential power of the states superposition

$$
\begin{aligned}
& |0\rangle \\
& |0\rangle \\
& =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
& =\frac{1}{2^{3 / 2}}(|000\rangle+|001\rangle+|010\rangle+|011\rangle+|100\rangle+|101\rangle+|110\rangle+|111\rangle) \\
& =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
& \text { the application of the } 3 \text { Hadamard } \\
& \text { gates is synchronized and in the total } \\
& \text { product state we have a superposition } \\
& \text { of the values from } 0 \text { to } 7 .
\end{aligned}
$$

The generic state of a qubit in spherical coordinates

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle=\left[\begin{array}{c}
\cos \frac{\theta}{2} \\
e^{i \phi} \sin \frac{\theta}{2}
\end{array}\right]
$$

We can write this because:

- the two coefficients α and β are complex
- we have the total probability normalization condition
- a state vector is defined only up to a global phase of no physical significance (we can take one of the coefficients pure real)

$$
p_{+1, z}=|\langle 0, \psi\rangle|^{2}=\cos ^{2} \frac{\theta}{2} \quad, \quad p_{-1, z}=|\langle 1, \psi\rangle|^{2}=\sin ^{2} \frac{\theta}{2}
$$

The phase-shift gate

$$
\begin{aligned}
& R_{z}(\delta)=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \delta}
\end{array}\right] \\
& R_{z}(\delta)|\psi\rangle=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \delta}
\end{array}\right]\left[\begin{array}{c}
\cos \frac{\theta}{2} \\
e^{i \phi} \sin \frac{\theta}{2}
\end{array}\right]=\left[\begin{array}{c}
\cos \frac{\theta}{2} \\
e^{i(\phi+\delta)} \sin \frac{\theta}{2}
\end{array}\right]
\end{aligned}
$$

$$
|x\rangle-R_{z}(\delta) \quad e^{i x \delta}|x\rangle \quad, \quad|x\rangle=\{|0\rangle,|1\rangle\}
$$

Universality of Hadamard and phase-shift gates

Any unitary operation on a single qubit can be constructed using only Hadamard and phase-shift gates. In particular, the generic state can be reached starting from $|0\rangle$ in the following way:

$$
e^{i \frac{\theta}{2}}|\psi\rangle=e^{i \frac{\theta}{2}}\left(\cos \frac{\theta}{2}|0\rangle+e^{i \phi} \sin \frac{\theta}{2}|1\rangle\right)=R_{z}\left(\frac{\pi}{2}+\phi\right) H R_{z}(2 \theta) H|0\rangle
$$

Two-qubit states and gates

$$
\begin{gathered}
|\psi\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle \\
|i j\rangle \equiv|i\rangle|j\rangle \equiv|i\rangle \otimes|j\rangle \quad i=\{0,1\}, j=\{0,1\} \\
\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=1
\end{gathered}
$$

The total vector space of the two qubits is the result of a tensor product, the computational base of the resulting space is given by the 4 possible combinations by tensor product of the computational basis of each of the two qubits.

The quantum (two-qubit) CNOT gate

It acts on the computational basis of the system of two qubits like this:

$$
|00\rangle \rightarrow|00\rangle, \quad|01\rangle \rightarrow|01\rangle, \quad|10\rangle \rightarrow|11\rangle, \quad|11\rangle \rightarrow|10\rangle
$$

The circuit diagram:
The 4×4 unitary matrix:

$$
U=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

The state of target qubit (y) flips only if the control qubit (x) is in the $|1\rangle$ state.

Obtaining a SWAP gate from CNOT gates

The CNOT gate generates entanglement of two qubits
$\operatorname{CNOT}(\alpha|0\rangle+\beta|1\rangle) \otimes|0\rangle=\alpha|0\rangle \otimes|0\rangle+\beta|1\rangle \otimes|1\rangle$
(the final state is non-separable, can not be expressed as a single product of two single qubit states)

Universal quantum gates

Any unitary operation in the Hilbert space of n qubits, $\mathrm{U}^{(\mathrm{n})}$ can be decomposed into one-qubit gates and two-qubit CNOT gates.

- we need few more special gates, like the controlled- U gate, where the U operator is applied to the target qubit only if the control qubit is in the $|1\rangle$ stat.
- the controlled-U gate can be generalized to the C^{k} - U gate, with k control qubits.

- a particular $\mathrm{C}^{\mathrm{k}}-\mathrm{U}$ is the C^{2}-NOT gate, or Toffoli gate; implementing the Toffoli gate can be done using CNOT, Hadamard and the unitary operator V

Implementing the Toffoli gate

where $\quad V=\left[\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right]$

Universal quantum gates

Finally we come to the following conclusion:

- a generic operator $\mathrm{U}^{(\mathrm{n})}$ can be decomposed by means of $\mathrm{C}^{\mathrm{k}}-\mathrm{U}$ gates
- any $\mathrm{C}^{\mathrm{k}}-\mathrm{U}$ gate $(\mathrm{k}>2)$ can be decomposed into Toffoli and controlled-U gates
- the C^{2}-NOT gate (Toffoli) can be implemented using CNOT, controlled-U and Hadamard gates
- for any single-qubit rotation U, the controlled- U operation can be decomposed into single-qubit and CNOT gates
- Classical bits and classical computing
- Quantum mechanics and quantum bits (qubits)
- Manipulating qubit states, unitary errors
- Quantum gates and circuits
- Quantum teleportation
- Quantum Fourier Transformation
- Quantum cryptography
- IBM Q experience

Un précurseur de la théorie atomique
"Si tout corps est divisible à l'infini, de deux choses l'une : ou il ne restera rien ou il restera quelque chose. Dans le premier cas la matière n'aurait qu'une existence virtuelle, dans le second cas on se pose la question : que reste-t-il? La réponse la plus logique, c'est l'existence d'éléments réels, indivisibles et insécables appelés donc atomes."
(Démocrite / vers 460-370 avant JC)

Smithsonian Libraries

Essai Philosophique sur les Probabilités, 1814

4

ESSAİ PHILOSOPHIQUE

et comme la cause de celui qui va suivre. Une intelligence qui pour un instant donné, connaîtrait toutes les forces dont la nature est animée, et la situation respective des êtres qui la composent, si d'ailleurs elle était assez vaste pour soumettre ces données à l'analyse, embrasserait dans la même formule les mouvemens des plus grands corps de l'univers et ceux du plus léger atome : rien ne serait incertain pour elle, et l'avenir comme le passé, serait présent à ses yeux. L'esprit humain offre, dans la perfection qu'il a

Quantum information: teleportation

Alice owns a two level system in some unknown state: $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ and wishes to send this qubit state to Bob using only a classical communication channel (we know that Alice can not clone that state into a quantum copy).

Alice can not simply measure the state, because it will immediately destroy that state with the price of obtaining only one bit of information (describing the generic state requires an infinite amount of classical information).

Quantum teleportation is possible, providing that Alice and Bob share an entangled pair of qubits.

For instance, starting from the computational basis we can create the entangled state of two qubits in this way:

$$
\operatorname{CNOT}(H \otimes I)|01\rangle=\left|\psi^{+}\right\rangle \quad \square \quad\left|\psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)
$$

Quantum information: teleportation

The three qubit state obtained by putting in the same register the two qubits and the qubit to be cloned is given by the tensor product:

$$
|\psi\rangle \otimes\left|\psi^{+}\right\rangle=\frac{\alpha}{\sqrt{2}}(|001\rangle+|010\rangle)+\frac{\beta}{\sqrt{2}}(|101\rangle+|110\rangle)
$$

Alice will let her qubit interact with her half of the Bell pair, which means that she will perform a measurement not in the computational basis but in the Bell basis.

Quantum information: teleportation

The three-qubit state can be written in the Bell basis after some transformations:

$$
\begin{aligned}
|\psi\rangle \otimes\left|\psi^{+}\right\rangle= & \frac{1}{2}\left|\psi^{+}\right\rangle(\alpha|0\rangle+\beta|1\rangle)+\frac{1}{2}\left|\psi^{-}\right\rangle(\alpha|0\rangle-\beta|1\rangle) \\
& +\frac{1}{2}\left|\phi^{+}\right\rangle(\alpha|1\rangle+\beta|0\rangle)+\frac{1}{2}\left|\phi^{-}\right\rangle(\alpha|1\rangle-\beta|0\rangle)
\end{aligned}
$$

and after the application of the two last gates $(H \otimes I) C N O T$ we obtain:

$$
\begin{aligned}
|\psi\rangle \otimes\left|\psi^{+}\right\rangle= & \frac{1}{2}|01\rangle(\alpha|0\rangle+\beta|1\rangle)+\frac{1}{2}|11\rangle(\alpha|0\rangle-\beta|1\rangle) \\
& +\frac{1}{2}|00\rangle(\alpha|1\rangle+\beta|0\rangle)+\frac{1}{2}|10\rangle(\alpha|1\rangle-\beta|0\rangle) \\
\text { Alice }< & \left|q_{2}\right\rangle \otimes\left|q_{1}\right\rangle \otimes\left|q_{0}\right\rangle
\end{aligned}
$$

Quantum information: teleportation

Finally, Alice makes a measurement on his two qubits and sends the result to Bob, in the form of two classical bits $(0,1)$ which correspond to the computational basis.

Quantum information: teleportation

If Bob chooses to apply a unitary operator U to his qubit according to the pair of bits sent by Alice as in next table, he will obtain exactly the initial generic state which Alice wanted to transmit:

Alice measures	Bob gets the bits	and applies to his qubit
$\|01\rangle$	0,1	I
$\|11\rangle$	1,1	σ_{z}
$\|00\rangle$	0,0	σ_{x}
$\|10\rangle$	1,0	$i \sigma_{y}$

- Classical bits and classical computing
- Quantum mechanics and quantum bits (qubits)
- Manipulating qubit states, unitary errors
- Quantum gates and circuits
- Quantum teleportation
- Quantum Fourier Transformation
- Quantum cryptography
- IBM Q experience

The Fourier Transformation, continuous and discrete

$$
\begin{array}{ll}
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-i a t} d t & \begin{array}{l}
\text { direct, time domain to } \\
\text { frequence domain }
\end{array} \\
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{i \omega t} d \omega \quad \longleftarrow \quad \begin{array}{l}
\text { inverse, frequence domain to } \\
\text { time domain }
\end{array}
\end{array}
$$

$$
\begin{array}{cc}
X_{k}=\sum_{n=0}^{N-1} x_{n} \mathrm{e}^{-i 2 \pi k n / N} & k=0, \ldots, N-1 \\
x_{n}=\frac{1}{N} \sum_{k=0}^{N-1} X_{k} \mathrm{e}^{i 2 \pi k n / N} & n=0, \ldots, N-1 \tag{DFT}
\end{array}
$$

The Fast Fourier Transformation (FFT)

The discrete Fourier transform (DFT) is defined by the formula:
(1)

$$
X_{k}=\sum_{n=0}^{N-1} x_{n} e^{-\frac{2 \pi i}{N} n k}, \quad \longrightarrow O\left(N^{2}\right) \text { complexity }
$$

where k is an integer ranging from 0 to $N-1$.

$$
\begin{equation*}
X_{k}=\sum_{m=0}^{N / 2-1} x_{2 m} e^{-\frac{2 \pi i}{N}(2 m) k}+\sum_{m=0}^{N / 2-1} x_{2 m+1} e^{-\frac{2 \pi i}{N}(2 m+1) k} \tag{2}
\end{equation*}
$$

(3)
$X_{k}=\underbrace{\sum_{m=0}^{N / 2-1} x_{2 m} e^{-\frac{2 \pi i}{N / 2} m k}}_{\text {DFT of even-indexed part of } x_{n}}+e^{-\frac{2 \pi i}{N} k} \underbrace{\sum_{m=0}^{N / 2-1} x_{2 m+1} e^{-\frac{2 \pi i}{N / 2} m k}}_{\text {DFT of odd-indexed part of } x_{n}}=E_{k}+e^{-\frac{2 \pi i}{N} k} O_{k}$.
(4)

$$
\begin{gathered}
X_{k}=E_{k}+e^{-\frac{2 \pi i}{N} k} O_{k} \\
X_{k+\frac{N}{2}}=E_{k}-e^{-\frac{2 \pi i}{N} k} O_{k}
\end{gathered}
$$

The QFT

We want to do a discrete transformation of a vector of N complex values :

$$
f(0), f(1), \ldots, f(N-1) \quad \rightarrow \quad \tilde{f}(0), \tilde{f}(1), \ldots, \tilde{f}(N-1)
$$

We start by building a generic state with $\mathrm{n}=\log _{2} \mathrm{~N}$ qubits, written in the computational basis as :

$$
|\psi\rangle=\sum_{j=0}^{2^{n}-1} f(j)|j\rangle
$$

(superposition)
where a vector of the computational basis is the tensor product :

$$
|j\rangle=\left|j_{0}\right\rangle \otimes\left|j_{1}\right\rangle \otimes \ldots \otimes\left|j_{n-1}\right\rangle \quad, \quad j_{m}=\{0,1\} \quad, \quad m=0, \ldots, n-1
$$

The QFT

We define the following unitary operator F acting on the states of the computational basis as follows :

$$
F(|j\rangle)=\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} e^{2 \pi i \frac{j k}{2^{n}}}|k\rangle
$$

such that an arbitrary state is transformed into :

$$
|\widetilde{\psi}\rangle=F(|\psi\rangle)=\sum_{k=0}^{2^{n}-1} \tilde{f}(k)|k\rangle
$$

with the coefficients being the discrete transformation :

$$
\tilde{f}(k)=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} e^{2 \pi i \frac{j k}{N}} f(j) \quad, \quad N=2^{n}
$$

The QFT

If we introduce the notations for the binary representation of the indices of of the states of the computational basis:

$$
\begin{aligned}
& j=j_{n-1} j_{n-2} \ldots j_{0}=j_{n-1} 2^{n-1}+j_{n-2} 2^{n-2}+\ldots+j_{0} 2^{0} \\
& 0 . j_{j_{l}+1} \ldots j_{m}=j_{l} 2^{-1}+j_{l+1} 2^{-2}+\ldots+j_{m} 2^{-(m-I+1)}
\end{aligned}
$$

then, after few steps, we obtain the product representation of the FT:

$$
\begin{array}{r}
F(|j\rangle)=\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{2 \pi i 0 . j_{0}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 0 . j_{1} j_{0}}|1\rangle\right) \cdots \\
\cdots\left(|0\rangle+e^{2 \pi i 0 . j_{n-1} j_{n-2} \cdots j_{0}}|1\rangle\right)
\end{array}
$$

Note that this state is not entangled, it is factorized in n single qubit states.

The quantum circuit for the QFT

with the operator $\quad R_{k}=\left[\begin{array}{cc}1 & 0 \\ 0 & \exp \left(\frac{2 \pi i}{2^{k}}\right)\end{array}\right]$

It is using n Hadamard gates and $\mathrm{n}(\mathrm{n}-1) / 2$ single qubit gates, so the computation requires $\mathrm{O}\left(\mathrm{n}^{2}\right)$ elementary quantum gates.

The FFT on a vector of $\mathrm{N}=2^{\mathrm{n}}$ complex values, needs $\mathrm{O}(\mathrm{N} \log \mathrm{N})$
elementary operations ! The DFT needs $\mathrm{O}\left(\mathrm{N}^{2}\right)$ operations.

- Classical bits and classical computing
- Quantum mechanics and quantum bits (qubits)
- Manipulating qubit states, unitary errors
- Quantum gates and circuits
- Quantum teleportation
- Quantum Fourier Transformation
- Quantum cryptography
- IBM Q experience

The RSA public-key cryptosystem
 (Rivest-Shamir-Adleman, 1977)

It is based on the number theory, in particular on the prime factorization of a very large number used in a trapdoor one-way function.

$$
\begin{gathered}
c=m^{e}(\bmod n), \quad m=c^{d}(\bmod n) \quad, \quad e d \equiv 1(\bmod \Phi(n)) \\
\Phi(n)=(p-1)(q-1) \quad, \quad n=p q \quad, \quad p, q \quad \text { prime numbers } \\
e=\text { private key } \\
\mathrm{d}=\text { public key }
\end{gathered}
$$

But the realization of an efficient quantum processor would break this inviolability (like the Shor algorithm).

The unbreakable cypher

Gilbert Vernam (1917)

- the text is written as a binary sequence of 0's and 1's

0	0	1	0	1	0	0	1	1

- the secret key is a completely random binary $\begin{array}{lllllllllll}1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0\end{array}$ sequence of the same length as the text

${ }_{1}$	0	1	1	0	1	0	0	1

- the cypher text is obtained by adding the secret key bitwise module 2 to the plain text

$$
c_{i}=p_{i} \oplus k_{i} \quad(i=1,2, \ldots, N)
$$

Note: a key must not be reused for another message!
and to go back to the text

$$
p_{i}=q_{i} \oplus k_{i} \quad(i=1,2, \ldots, N)
$$

The unbreakable cypher

- the secret key has to be unique for each message
- the secret key must have the same length as the message
- the problem is not the transmission of the cypher text but the distribution of a large number of secret keys
- even by brute force it is impossible to guess the original message

The BB84 (quantum) protocol

Bennett and Brassard, 1984

BB84 is using four quantum states of a single qubit and it is coding the classical bits into states of a qubit using two alphabets:

$$
|0\rangle, \quad|1\rangle, \quad|+\rangle \equiv|0\rangle_{x}=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle), \quad|-\rangle \equiv|1\rangle_{x}=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
$$

which are the eigen-states of the Pauli matrices σ_{z} and σ_{x} respectively (the z-alphabet and the x -alphabet), a pair on non-commuting observables.

$$
0=\left\{\begin{array}{l}
|0\rangle, \text { z-alphabet } \\
|+\rangle, \text { x-alphabet }
\end{array} \quad 1=\left\{\begin{array}{l}
|1\rangle, \text { z-alphabet } \\
|-\rangle, \text { x-alphabet }
\end{array}\right.\right.
$$

The first part of the BB84 protocol

Alice's data bits	1	0	0	0	1	1	0	1	0	1

1. Alice generates a random sequence of 0's and 1's

The first part of the BB84 protocol

Alice's data bits	1	0	0	0	1	1	0	1	0	1
Alice's alphabet	x	z	x	z	x	x	x	z	z	x

2. Alice encodes each data bit in a qubit, by choosing Randomly between the z - and the x -alphabet

The first part of the BB84 protocol

3. The resulting string of qubits is sent by Alice and received by Bob (by teleportation)

The first part of the BB84 protocol

4. For each qubit, Bob decides at random which alphabet (axis) to use for the measurement, z or x .

The first part of the BB84 protocol

If Bob chooses the same alphabet as Alice, he gets the same bit value (if there are no eavesdroppers or noise); this happens on average for half of his choices. When Bob chooses a different axis, the resulting bit will agree with the one of Alice only half of the time, on average.

The first part of the BB84 protocol

The first part of the BB84 protocol

5. Bob communicates to Alice over a classical public channel his choices of the alphabet (but not the results of his measurements!)
6. Alice communicates to Bob over a classical public channel which alphabet she used for the transmitted qubits.
7. Alice and Bob delete all bits corresponding to the cases in which they used different alphabets. The remaining bits form the "raw key".

+ other steps to minimize the effects of eavesdropping and especially noise.

The first part of the BB84 protocol

The raw key is now: 10010 (in the process, 5 bits out of 10 were lost)

- Classical bits and classical computing
- Quantum mechanics and quantum bits (qubits)
- Manipulating qubit states, unitary errors
- Quantum gates and circuits
- Quantum teleportation
- Quantum Fourier Transformation
- Quantum cryptography
- IBM Q experience

IBM Q

IBM Q:

- quantum computing for researchers, www. ibm. com/quantum-computing/

Qiskit:

- open-source quantum computing software development framework,
- qiskit.org

IBM Q account:

- qiskit.org/ibmqaccount

Tutorials:

- github.com/Qiskit/qiskit-iqx-tutorials.git

IBM Q
IBM Q backend ibmqx2:

- 5 qubits, 1024 shots

(a) $I B M Q X 2$

arXiv:1712.04722v3
Running an example: create a 3-qubit entangled state GHZ (Greenberger-Horne-Zeilinger):

$$
|G H Z\rangle=\frac{|0\rangle^{\otimes 3}+|1\rangle^{\otimes 3}}{\sqrt{2}}=\frac{|000\rangle+|111\rangle}{\sqrt{2}}
$$

Device information

https://github.com/Qiskit/ibmq-device-information/tree/master/backends/yorktown/V1

IBM Q

We should have only states (000) and (111) but in reality we see with small probability other states.

$$
|G H Z\rangle=\frac{|0\rangle^{\otimes 3}+|1\rangle^{\otimes 3}}{\sqrt{2}}=\frac{|000\rangle+|111\rangle}{\sqrt{2}}
$$

The GHZ state

$$
|\psi\rangle=\mathbf{T}+\mathbf{h}+\mathbf{a}+\mathbf{n}+\mathbf{k}+\mathbf{Y}+\mathbf{o}+\mathbf{u}+!
$$

Extra slides

Superconducting loops

A resistance-free current oscillates back and forth around a circuit loop. An injected microwave signal excites the current into superposition states.
Longevity (seconds)

Logic success rate	
99.4%	99.9%

Number entangled	
9	14

Company support
Google, IBM, Quantum Circuits

Silicon quantum dots

These "artificial atoms" are made by adding an electron to a small piece of pure silicon. Microwaves control the electron's quantum state.

Trapped ions

Electrically charged atoms, or ions, have quantum energies that depend on the location of electrons. Tuned lasers cool and trap the ions, and put them in superposition states.
>1000
000

Electron
0.03 N/A

Topological qubits

Quasiparticles can be seen in the behavior of electrons channeled through semiconductor structures. Their braided paths can encode quantum information.

Diamond vacancies

A nitrogen atom and a vacancy add an electron to a diamond lattice. Its quantum spin state, along with those of nearby carbon nuclei, can be controlled with light.

10
99.2\%

.......

6
Quantum Diamond Technologies

+ Pros
Fast working. Build on existing semiconductor industry.
- Cons

Collapse easily and must be kept cold.

Very stable. Highest achieved gate fidelities.

Slow operation. Many lasers are needed.

Stable. Build on existing semiconductor industry.

Only a few entangled. Must be kept cold.

Greatly reduce
errors.

Existence not yet confirmed

Can operate at room temperature.

Difficult to entangle.

Note: Longevity is the record coherence time for a single qubit superposition state, logic success rate is the highest reported gate fidelity for logic operations on two qubits, and number entangled is the maximum number of qubits entangled and capable of performing two-qubit operations.

AND, OR, NOT and FANOUT constitute a universal set of gates for classical computation.

Proof.
The m-bit function is equivalent to m one-bit (or Boolean) functions

$$
f_{i}:\{0,1\}^{n} \rightarrow\{0,1\}, \quad(i=1,2, \ldots, m)
$$

where $f=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$. For any values of the input argument $a=\left(a_{n-1}, a_{n-2}, \ldots, a_{1}, a_{0}\right)$, one way to compute the boolean function $f_{i}(a)$ is to consider the minterms $f_{i}^{(/)}(a)$, defined as

$$
f_{i}^{(I)}= \begin{cases}1, & \text { if } a=a^{(I)} \\ 0, & \text { otherwise }\end{cases}
$$

(cont.)

for instance, if the particular value of $a^{(I)}=110100 \ldots 001$, then $f_{i}^{(I)}$ can be defined as follows

$$
f_{i}^{(I)}=a_{n-1} \wedge a_{n-2} \wedge \bar{a}_{n-3} \wedge a_{n-4} \wedge \bar{a}_{n-5} \wedge \bar{a}_{n-6} \wedge \ldots \wedge \bar{a}_{2} \wedge \bar{a}_{1} \wedge a_{0}
$$

the one-bit function f_{i} can be calculated for all possible a values as follows

$$
f_{i}(a)=f_{i}^{(1)} \vee f_{i}^{(2)} \vee \ldots \vee f_{i}^{(k)}
$$

as the logical OR of all k minterms, with $0 \leq k \leq 2^{n}-1\left(2^{n}\right.$ is the number of all possible values of the input a). The FANOUT gate is required to feed the input a to the k minterms.

(cont.)

Consider the Boolean function $f(a)$, where $a=\left(a_{2}, a_{1}, a_{0}\right)$ defined as follows

a	a_{2}	a_{1}	a_{0}	$f(a)$		
$a^{(1)}=1$	0	0	1	1		
$a^{(2)}=3$	0	1	1	1		
$a^{(3)}=6$	1	1	0	1		
$a^{(4)}=0$	0	0	0	0		
$a^{(5)}=2$	0	1	0	0		
$a^{(6)}=4$	1	0	0	0		
$a^{(7)}=5$	1	0	1	0		
$a^{(8)}=7$	1	1	1	0		
$f(a)=f^{(1)}(a) \vee f^{(2)}(a) \vee f^{(3)}(a)$					\quad	
:---:						
$f^{(2)}=\bar{a}_{2} \wedge a_{1} \wedge a_{0}$						

Note: we may have up to $2^{3}=8$ minterms.

The no-cloning theorem

Let us consider two qubits in the states $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ (generic) and $|\phi\rangle$ (ancillary qubit), the cloning machine in the initial state $\left|A_{i}\right\rangle$ and suppose there is a unitary transformation U such that:

$$
U\left(|\psi\rangle|\phi\rangle\left|A_{i}\right\rangle\right)=|\psi\rangle|\psi\rangle\left|A_{f \psi}\right\rangle=(\alpha|0\rangle+\beta|1\rangle)(\alpha|0\rangle+\beta|1\rangle)\left|A_{f \psi}\right\rangle
$$

but at the same time we can write:
$U\left(|\psi\rangle|\phi\rangle\left|A_{i}\right\rangle\right)=U\left((\alpha|0\rangle+\beta|1\rangle)|\phi\rangle\left|A_{i}\right\rangle\right)$
if we invoke the linearity of quantum mechanics we obtain:
$\alpha U\left(|0\rangle|\phi\rangle\left|A_{i}\right\rangle\right)+\beta U\left(|1\rangle|\phi\rangle\left|A_{i}\right\rangle\right)=\alpha|0\rangle|0\rangle\left|A_{f 0}\right\rangle+\beta|1\rangle|1\rangle\left|A_{f 1}\right\rangle$
which is the entangled state clearly different from the desired cloned state.

The Bell (EPR) basis

This circuit:

transforms the computational basis states into the Bell states:

$$
\begin{aligned}
|00\rangle \rightarrow\left|\phi^{+}\right\rangle & =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
|10\rangle \rightarrow\left|\phi^{-}\right\rangle & =\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
|01\rangle \rightarrow\left|\psi^{+}\right\rangle & =\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
|11\rangle \rightarrow\left|\psi^{-}\right\rangle & =\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{aligned}
$$

(EPR $=$ Einstein-Podolski-Rosen, a paradox about the quantum nature of the reality)

