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At CERN

« CERN OpenLab, “Quantum Computing for High Energy Physics Workshop”
5-6 November 2018, CERN
https://indico.cern.ch/event/719844/
D-Wave, Rigetti, IBM, Google, Intel, Microsoft, ProjectQ, Strangeworks, ...

“A contribution to the particle physics strategy update 2018-2020”
https://indico.cern.ch/event/765096/contributions/3295802/attachments/
1785308/2906350/QC-HEP-2020.pdf

Quantum Computing for HEP

CERN openlab — a public-private partnership between CERN and leading companies driving
ICT innovation — organised a highly successful workshop on this topic at CERN in November
2018, attended by more than 400 representatives of the HEP community and of major
research laboratories, experts in IQCT and the leading companies working at the

development of IQCT solutions.
It is the common consensus of the signees of this document that, given the projected deficit

of HEP computing and the potential promise of QICT, the HEP community should invest in 2
the exploration of these technologies.



https://indico.cern.ch/event/765096/contributions/3295802/attachments/

At IN2P3

« Working Group at IN2P3 (within GT09) on quantum information technology:
6 September 2019, Michel-Ange, Paris (a report on the CERN workshop)
https://indico.in2p3.fr/event/19662/

e “Prospectives CNRS/IN2P3 Calcul Algorithmes et Données”
17-18 October 2019, Clermont-Ferrand
https://indico.in2p3.fr/event/19733/
https://webcast.in2p3.fr/container/journees-prospectives-calcul-algorithmes-et-
donnees

e “Journées thématiques IN2P3 — Quantum computing: state of the art and
applications”
2-3 December 2019, IPNO, Orsay
https://indico.in2p3.fr/event/19917/
CEA, Atos, ...


https://indico.in2p3.fr/event/19733/
https://indico.in2p3.fr/event/19917/

And at CNRS

e “Les débuts de 'ordinateur quantique: principes, promesses, réalisations
et défis”, by Pascale Senellart-Mardon (C2N, Center for Nanoscience and
Nanotechnology)

14 January 2020, IJCLab, Orsay
https://indico.lal.in2p3.fr/event/5907
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 Classical bits and classical computing



Semiconductors

their conductivity can be controlled by doping and gating with electric fields

a silicon crystal

By Jurii - http:/images-of-elements.com/silicon.php, CC BY 3.0, https:/commons.wikimedia.org/w/index.php?curid=7353911



The flip-flop circuit (a bi-stable circuit)
a device that can store a single bit of data (0 or 1)
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https://en.wikipedia.org/wiki/Flip-flop_(electronics)



Inverter (0 =1, 1 = 0) with transistor-transistor logic (TTL)

Transistor Transistor
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Elementary logic gates: one-bit logic gates

f:{0,11=1{0,1}

NOT FANOUT (COPY) IDENTITY

a = 1—a a=a

d
d
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Elementary logic gates: two-bit logic gates

f:{0,11°>{0,1]

the AND gate:
al|b|laAb
aAb = ab 0|0 0
0] 1 0
1|0 0
1|1 1
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Elementary logic gates: two-bit logic gates

f:{0,11°>{0,1]

the OR gate:
a|blaVvb
avb = a+b—ab 00 0
01 1
10 1
1|1 1
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Elementary logic gates: two-bit logic gates

f:{0,11°>{0,1]

the XOR (exclusive OR) gate:

a®b = a+b (mod?2)

= = O O W
= O = O| T
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Elementary logic gates: two-bit logic gates

f:{0,11°>{0,1]

the NAND (negated AND) gate:

atb = anb = ab = 1—ab

— - O O W
= O = O T
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Elementary logic gates: two-bit logic gates

f:{0,11°>{0,1]

the NOR (negated OR) gate:

av b avb = a+b—ab
a—

= aqV
= 1l—a—b+ab

R = O O|Ww
O = O| T




A circuit for computing the sum (with carry bit)

= e
by —+—— O
Ci y /D Si

Given the binary representations a = (a,_1,...,4a1,4d0) and

b= (by_1,...,b1,bp), the i-th bit of the sum is

si=aj+ bj+ ¢ (mod2)

where ¢; is the carry over from the sum a;_1 + bj_1 + ¢j_1. The carry over
Is set to one if two or more of the input bits a;, b; and ¢; are 1 and 0
otherwise. This circuit can be built with the following elementary gates: 2

AND, 1 OR, 2 XOR and 4 FANOUT.
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Universal (classical) gates

Any function f:{0,1}"={0,1}" can be constructed from the elementary gates:
AND, OR, NOT and FANOUT!

We say that AND, OR, NOT and FANOUT constitute a universal set of gates for
the classical computation.

A smaller universal set is NAND and FANOUT:
OR can be obtained from NOT and AND: aVb = dAb (De Morgan's identities)
and NOT can be obtained from NAND and FANOUT:;

ata = aha = 1-a° = 1—-a =

Ql

18
\ here we have FANOUT and NAND



Classical reversible computing

It is possible top embed any irreversible function into a reversible function:
irreversible function: f:{0,1|" = {0,1}" m>n
reversible function:  f :(0,1]™*" > [0,1]™"
defined such that: [ (x,y) = (x,[y+f(x)](mod2"))

where x represents m bits, while y and f(x) represent n bits. Since the embedding
function is bijective, it will be reversible! So at the logic level it is possible, with
the price of introducing more dimensions in the calculations (ancillary bits y).

19



A simple reversible classical gate: the controlled-NOT (CNOT)

The exclusive-OR function (XOR):

The CNOT gate:

- O O W

— - O O
— - O O] Y
O = = O T
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The circuit representation of the classical CNOT gate

the control bit: a L a = 3
the target bit: b o b=adb
reversibility

two CNOT gates, applied
one after the other: (a,b) @ (a,a®b) & (a,a®(a®b))=(a,b)

so CNOT is self-inverse: (CNOT)ZZI , CNOT '=CNOT

If the target bit is set to 0 (b=0) then CNOT becomes the FANOUT gate:
(a,0) » (a,a)

... but two-bit reversible gates are not enough for universal computation !
We can not construct the NAND gate ...

21




Three-bit reversible gates: the Toffoli gate
(controlled-controlled-NOT, or C*NOT)

control bit [O]: a ® 2 = a3
control bit [1]: b ® b= b
target bit [2]:  C &% c'=cPab

The Toffoli gate is a universal gate!

NOT: a=b=1 , c'=c
AND: c=0 , c'=anb
OR: a»a , b>b , c=1 , c'=aVvb

22



Quantum mechanics and quantum bits (qubits)

23



Quantum bits (qubits)

A qubit is a quantum object: a microscopic system whose state and evolution
are governed by the laws of quantum mechanics. In order to keep a good
resemblance with the classical bit, this system will be chosen to have only two
possible states, corresponding to some (measurable) physical property.

The two states are orthogonal and any arbitrary state the system can be described
as a linear combination (superposition) of those two states:

) = a [0) + 6 ]1) a*+Bl=1 o,peC

24



The 1st postulate of quantum mechanics

The state vector (or wave function) completely describes the state of

the physical system.

The evolution in time of the state vector
i1s governed by the Schrédinger equation:

(H is the Hamiltonian, a self-adjoint operator)

The coefficients o and § multiplying

ing [¥(t)) = Hy(t))

the 6™ postulate

the vectors of the computational
basis are functions of time:

¥(t)) = a(t)0) + B(¢) 1)

h~6.626X 10> Joule-sec
i=V/—1

25




Vector algebra with qubits

Since we describe our space with two coordinates, we can write the two basis

vectors:
o-f) -

and their superposition in the state vector: ’¢> =

The vectors
of the computational
basis are normalized
orthogonal

vectors: (010) = (1 0) ((1)) —1 , (0]1) =(1 0) (1) =0




The 2nd postulate of quantum mechanics

We associate with any observable a self-adjoint operator on the Hilbert
space of the states. The only possible outcome of a measurement is one of

the eigen-values of the corresponding operator (3™ postulate).

A single-qubit operator can be represented by a 2x2 matrix: O, = (é 01)
(described within a given orthonormal vector base) B
1 O 1 1
o, |0) = = = +110
100 =[5 % o) = o) = 210

o=y 3[4 f2)

’O> and |1> are eigen-vectors of the operator o with eigen-values “+1” and “-1”

27




The probability of a given measurement outcome
(the 4™ postulate)

If we expand the state vector over the orthonormal basis formed by the
eigen-vectors of the operator corresponding to the observable:

¥(t)) = (1) [0) + 5(t) 1)

then the probability that a measurement at time t results in outcome

“+1” or “-1” is given respectively by:

p1(t) = | Ol (t)) |° = |a(1)]*
p-1(t) = [ (1(1)) [2 = |B(1)[?

Note: global phase factors ‘¢’> — 6""6j ‘1/)) do not affect physical predictions!
28



The quantified spin and the choice of
the direction of the measurement

29
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The quantified spin and the choice of
the direction of the measurement

o, = |
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1 0

|
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o

The quantified spin and the choice of
the direction of the measurement
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o

The quantified spin and the choice of
the direction of the measurement

= Pauli matrices (operators), also o, , 0, , O,

32



The eigen-vectors of the spin operators (Pauli)
corresponding to eigen-values “+1” and “-1”

= 00 +[1) , [-), = 2(10) - [1))
)y = H0+i[1) L =), = 2(10) — i 1))

33



Circuit symbol representation for a measurement

6) = al0) + B1) —

Z

0) = al0) + B[1) — 7

) = al0)+811) — 7

Note: double line means that this is a classical information (a bit).

34



The 5th postulate of quantum mechanics

If a system is described by the state vector |¢0) = « |0) + 3 |1)

and we measure o obtaining the outcome (spin projection) +1 or -1,

then immediately after the measurement the state of the system is
given by the eigen-vector corresponding to the eigen-value: \O) or

1) respectively.

The expected value of an observable will be (4™ postulate):

<Uz> — anpn — an <w|Pn|¢> — (W(Z SnPn)|w> — (1/)|0z|¢>

from the outcome probabilities: p, = <7/J| P n|7/}>

with the projector operators: P; = \0) <0\ ., Po= \l) (1\
35



o

Before the measurement of the z spin component
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After the measurement

or




The Stern-Gerlach experiment

Oven

Collimator

stream of silver
atoms

detector

Force proportional to the
gradient of the magnetic field

0B, Z T B i )
07

()

FZ=M

Classically predicted Observed

http://web.stanford.edu/class/rad226a/Lectures/Lecture5-2017-Quantum-III.pdf
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The no-cloning theorem

Contrary to the classical case, it is not possible to clone (COPY or FANOUT)
a generic quantum state.

a
The equivalent of this: a —<: does not exist in the quantum case.

d

It is impossible to build a machine that operates unitary transformations and
is able to clone the generic state of a qubit.

This has important consequences and leads to interesting consequences like
the possibility of doing quantum cryptography.

The possibility of cloning would also invalidate the uncertainty relation of
Heisenberg because it would be possible to simultaneously measure with
infinite precision two physical properties of the system on two identical copies
of the same quantum state. 39



« Manipulating qubit states, unitary errors

40



Flipping a qubit using a constant magnetic field

The Schrodinger equation: ] ﬁ g ‘77/)(1'» H W)(i‘))

The time-evolution operator:
(1)) = U(t, to) [9(to)) . U(t,to) =exp [—71H(t — to)]
and in this particular case U is a unitary operator: (U (= U f U=1

The Hamiltonian of a spin interacting with a magnetic field is:

H=—-uH o, H:(HX7,H)/)HZ) ) O-:(O-Xao-yao-z)

41



Flipping a qubit with a constant magnetic field

1
. - n = (HXaHyyHZ) ; n:(nX7nyanZ)
Using the \/ H2 + 7—[)2/ + H2
notations: -
Ca(t) = \/ H2 + H2 + H2
We obtain for the
time-evolution - Cos + 1 n; sin o (ny + 1 nx) sin o |
operator this: U (t) —
(—ny + i ng)sinae cosa — i nysino

42



Flipping a qubit with a constant magnetic field

For instance, with a magnetic field: H = (HX, 0, O) ;s N = (1, 0, O)
We can flip the state ’O> into the state |1> :

[O] iy H ) " cosa(tor) i sina(tor) H

i sina(tp1) cosaftor) |

Which is fulfilled if:

mh
211 Hx|

COS(){(t()l) =0 , to1=

43



Unitary errors

Any quantum computation is given by a sequence of quantum gates applied to
some initial state:

W}n> — H Ui W)O>
i=1

If the errors are unitary (no coupling to the environment, but any realistic
implementation of a unitary operation will involve some error, since unitary

operators form a continuous set), instead of operators U. we apply slightly

different operators V.:

i) = Ui [ppi—1) == V|¢pji_1) = [¢;) + |Ei)

44



Unitary errors

For instance, in the previous qubit flip example

instead of 1/)1> — ‘0) ; 1/)2> — U(t01) W)1> — |1>

we will have ¢,2> = |1) + (€0 |0) + €1 |1))

Back to the general case, after n iterations we obtain:

|;£:1> — |¢n> + |En> + VnVn—l |En—2> R VnVn—l c e V2 |E1>

with a limit of the error: / H |17;,> — | || < ne\

o, > o<+n e

. 2
In the “classical” case we have: o =

o

l



Quantum gates and circuits

46



Single-qubit gates O

X b

(Pauli operators)

ox |0)
ox |1)
ay |0)
oy |1)
oz |0)

0z |1)

1)
0)
1)

—110)

y

47



The Hadamard gate

H10) = 5([0) + 1)) =

H1) = 15(0) - 1)) =

+)x

=)

x) —H

()X -

Transforms the

computational basis: |0> ; |1> — |‘|‘>X ; |_>x

x) = {10), 1)}

48




The exponential power of the states superposition

0) H
0) H
0) H

7(10) +11))

Nin

5(10) +11))

S

2-(0) + 1))

A network of 3 qubits:
the application of the 3 Hadamard

gates is synchronized and in the total

product state we have a superposition
of the values from 0 to 7.

5575(/000) + ]001) + [010) + |011) + |100) + |101) + |110) + |111))

572(10) + (1) +12) + [3) + 4) + [5) +16) + 7))

49



The generic state of a qubit in spherical coordinates

0
Yo COS 5
) = cosg 0) + e'?sin g 1) = LM) sir?Q]
2

We can write this because:
« the two coefficients a and B are complex
« we have the total probability normalization condition

« a state vector is defined only up to a global phase of no physical significance
(we can take one of the coefficients pure real)

pr1iz=1(04)P=cos?§ , pa,=|(1,¥)[*=sin?}

50



R(0) = |

The phase-shift gate

1 O
Oei5

51



Universality of Hadamard and phase-shift gates

Any unitary operation on a single qubit can be constructed using only
Hadamard and phase-shift gates. In particular, the generic state can be
reached starting from 0) in the following way:

i

e'2 i) = e'2 (cos & [0) + e/®sin & 1)) = R,(% + ¢) H R.(20) H |0}

52



Two-qubit states and gates

1) = a|00) 4+ £]01) + v |10) 4+ 9 |11)

ny=lnel) =101}, =101}

m
A +p+y +8°=1

The total vector space of the two qubits is the result of a tensor product,
the computational base of the resulting space is given by the 4 possible
combinations by tensor product of the computational basis of each of the

two qubits.

53



The quantum (two-qubit) CNOT gate

It acts on the computational basis of the system of two qubits like this:

00) — |00), |01) — |01), |10) — |11), |11) — |10)

The circuit diagram: The 4 x 4 unitary matrix:
1 0 0 O]
x) l |x) y_ |01 00
y) —D ly @ x) o9 ot
0 0 1 0

The state of target qubit (y) flips only if the control qubit (x) is in the |1> state.

54



Obtaining a SWAP gate from CNOT gates

(N
& .Y, &
;: 1N ® R
L/ L/

The CNOT gate generates entanglement of two qubits

CNOT(a [0) + B 1)) ® [0) = a [0) ® [0) + B]1) @ |1)

(the final state is non-separable, can not be expressed as a
single product of two single qubit states)

55



Universal quantum gates

Any unitary operation in the Hilbert space of n qubits, U™ can be
decomposed into one-qubit gates and two-qubit CNOT gates.

« we need few more special gates, like the .~ .
controlled-U gate, where the U operator is T
U

applied to the target qubit only if the control
qubit is in the |1) stat.

e the controlled-U gate can be generalized to the
C*-U gate, with k control qubits. — U —

* a particular C*-U is the C>-NOT gate, or Toffoli gate; implementing the
Toffoli gate can be done using CNOT, Hadamard and the unitary operator V

56



Implementing the Toffoli gate

SV
o—
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Universal quantum gates

Finally we come to the following conclusion:

* a generic operator U™ can be decomposed by means of C*-U gates
 any C*-U gate (k > 2) can be decomposed into Toffoli and controlled-U gates

e the C*:-NOT gate (Toffoli) can be implemented using CNOT, controlled-U and
Hadamard gates

 for any single-qubit rotation U, the controlled-U operation can be decomposed
into single-qubit and CNOT gates

58



Quantum teleportation

59



Un précurseur de la théorie atomique

"SI tout corps est divisible a l'infini, de deux choses l'une : ou il ne restera rien ou
Il restera quelque chose. Dans le premier cas la matiere n‘aurait qu'une existence
virtuelle, dans le second cas on se pose la question : que reste-t-il ? La réponse
la plus logique, c'est I'existence d'éléments réels, indivisibles et insecables
appelés donc atomes."

(Demoaocrite / vers 460-370 avant JC)
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LAPLACE

Essai Philosophique sur les Probabilités, 1814

4 ESSAl PHILOSOPHIQUE

et comme la cause de celui qui va suivre. Une
intelligence qui pour un instant donné, connai-
trait toutes les forces dont la nature est animée,
et la situation respective des étres qui la compo-
sent, si d’ailleurs elle était assez vaste pour sou-

‘ mettre ces données a l'analyse , embrasserait
Smithsonian Libraries dans la méme formule les mouvemens des plus
grands corps de I'univers et ceux du plus léger
atome :[rien ne serait incertain pour elle, et Ia-
venir comme le passé, serait présent a ses yeux.
L’esprit humain offre, dans la perfection qu'il a

gallica.bnf.fr
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Quantum information: teleportation

Alice owns a two level system in some unknown state: |¢) = « |0) + 3 |1)
and wishes to send this qubit state to Bob using only a classical communication
channel (we know that Alice can not clone that state into a quantum copy).

Alice can not simply measure the state, because it will immediately destroy
that state with the price of obtaining only one bit of information (describing
the generic state requires an infinite amount of classical information).

Quantum teleportation is possible, providing that Alice and Bob share an
entangled pair of qubits.

For instance, starting from the computational basis we can create the
entangled state of two qubits in this way:

CNOT(H® 1)|01) = |[¢p1)  wep |¥7) = %(!01>+I10>)

63
(Bell pair)



Quantum information: teleportation

The three qubit state obtained by putting in the same register the two qubits
and the qubit to be cloned is given by the tensor product:

2 (1001) + [010)) + 52(|101> +[110))

) @ [§pT) = 7 7

Alice will let her qubit interact with her half of the Bell pair, which means
that she will perform a measurement not in the computational basis but
in the Bell basis.

64



Quantum information: teleportation

The three-qubit state can be written in the Bell basis after some transformations:

) @) = T («]0) + B1)) + 5 [v7) («]0) — B1))

+3[¢%) (@ |1) + 810)) + 3 |67) (e[1) — B]0))

and after the application of the two last gates (H ® /)CNOT we obtain:
) @[Ty = 3101) (a]0) + B]1)) + 3[11) («]0) - B[1))

+3100) (a 1) + 80)) + 3 [10) (1) — B]0))

Alice <—— . |q2> ®\| J1 >/® |q0> b memmsd> the Bell pair



Quantum information: teleportation

/] it
a |[¥) *— H o
bit,
q, [0) —HI—+—& ”j—
9% 1) = U )

Finally, Alice makes a measurement on his two qubits and sends the
result to Bob, in the form of two classical bits (0, 1) which correspond to
the computational basis.

66



Quantum information: teleportation

If Bob chooses to apply a unitary operator U to his qubit according to the
pair of bits sent by Alice as in next table, he will obtain exactly the initial
generic state which Alice wanted to transmit:

Alice measures | Bob gets the bits | and applies to his qubit
01) 0,1 /
11) 1,1 O
00) 0,0 Ox
10) 1,0 0y




Quantum Fourier Transformation

68



The Fourier Transformation, continuous and discrete

o W direct, time domain to
F(o)= j J (e "dr - frequence domain
1 2 ' inverse, fre '
ou B0 icat | , frequence domain to
f(t) - - _LF(Q)B do time domain
N—1 |
Xp= ) znpe /N p=0,... ,N-1
n=>0
| N (DFT)
mﬂ:ﬁ X et2mkn/N n=0,...,N—1
k=0

69



(1)

(2)

(3)

(4)

The Fast Fourier Transformation (FFT)

The discrete Fourier transform (DFT) is defined by the formula:

N-1 |
Xy = Z mne'%”k, » O(N°®) complexity
n=0

where k is an integer ranging from 0 to N — 1.

2mi
——(2m)k ——(2m+1)k
Xk = Y @me N1 gpnpe” W O
m=(0 m=0
Nf’?—]. 2mi . i N/E—l 2mi i
——mk _ AT g —~—mk _f
Xy = Y. xome N2 +e N > Tomipre N2 =Ep+e N O
m=0 m=0
DFT of even—indexed part of z, DFT of odd—indexed part of z,
_ 27 g
Xy = Ep+e v70Oy
_ 2w
X ~ = Ep—e N 0O 70
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The QFT

We want to do a discrete transformation of a vector of N complex values :

£(0),f(1),....f(N—=1) — £(0),f(1),...,f(N—1)

We start by building a generic state with n = log N qubits, written in the

computational basis as :

|¢> — Z f (J ) | j) (superposition)

where a vector of the computational basis is the tensor product :

D=l ®...® 1) , Jm=1{0,1} , m=0,...,n—1

71



The QFT

We define the following unitary operator F acting on the states of the

computational basis as follows :

2"-1

2n Z 271':2—” |k

such that an arbitrary state is transformed into :

3= F) = S A 16

k=0

F

with the coefficients being the discrete transformation :

1 N-1
gl N=2"

N — 72

zl'*‘

.



The QFT

If we introduce the notations for the binary representation of

the indices of of the states of the computational basis:

J = dn-tin-2 - jo = Jn-12"" 4 ja22" 2 4+ jp2°

OJii+1---Jm :j;2_1 —|—j;+12_2 + ... —|—jm2_(m_’+1)

then, after few steps, we obtain the product representation of the FT:

1

\/2_n(|0> + eQﬂ'f 0.0 |1>)(|0> + eQ?T: 0.J1Jo |1>) o

F(U)) =

. (|0> 4+ o271 0jn—1jn—2"Jo |1>)

Note that this state is not entangled, it is factorized in n single qubit states.
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‘J.n—1>

Un—2>

1)

o)

The quantum circuit for the QFT

with the operator R, — [1 0 )]

0 exp%

It is using n Hadamard gates and n(n-1)/2 single qubit gates,
so the computation requires O(n®) elementary quantum gates.

The FFT on a vector of N = 2" complex values, needs O(N logN)

elementary operations ! The DFT needs O(N®) operations. 74



Quantum cryptography
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The RSA public-key cryptosystem
(Rivest-Shamir-Adleman, 1977)

It is based on the number theory, in particular on the prime

factorization of a very large number used in a trapdoor one-way function.

c=m‘(modn) , m=c%(modn) , ed=1(mod®(n)

®(n)=(p-1)(q-1) , n=pq , p,q primenumbers

e = private key
d = public key

But the realization of an efficient quantum processor would break
this inviolability (like the Shor algorithm).
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The unbreakable cypher
Gilbert Vernam (1917)

e the text is written as a binary sequence

of 0’s and 1’s A0 01010011

 the secret key is a completely randombinary 1 o0 o0 1 1 1 0 1 0
sequence of the same length as the text

1 0 1 1 0 1 O 0 1
e the cypher text is obtained by adding the /

secret key bitwise module 2 to the plain text

ci=pidk (i=12,...,N) Note: a key must not be reused
for another message!

and to go back to the text

pi=qi®k (i=12,...,N) 77




Alice

The unbreakable cypher

the secret key has to be unique for each message
the secret key must have the same length as the message

the problem is not the transmission of the cypher text but
the distribution of a large number of secret keys

even by brute force it is impossible to guess the original message

011001000111....0100111100

Bob
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The BB84 (quantum) protocol
Bennett and Brassard, 1984

BB84 is using four quantum states of a single qubit and it is coding the
classical bits into states of a qubit using two alphabets:

0, ) . +>zo>x—\%(|o>+|1>), —>zl>x—\%(|o>—|1>)

which are the eigen-states of the Pauli matrices 07 and Ox respectively
(the z-alphabet and the x-alphabet), a pair on non-commuting observables.

- -

|0) , z-alphabet 1) z-alphabet

|+) , x-alphabet |—) , x-alphabet

- -
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The first part of the BB84 protocol

Alice’s 1 0 0 0 1 1 0 1 0 1
data bits

1. Alice generates a random sequence of 0’s and 1’s
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The first part of the BB84 protocol

Alice's 1 0 0 0 1 1 0 1 1
data bits
Alice's X Z X Z X X X Z X
alphabet

2. Alice encodes each data bit in a qubit, by choosing
Randomly between the z- and the x-alphabet
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The first part of the BB84 protocol

Alice's 1 0 0 0 1 1 0 1 0 1
data bits
Alice's X Z X Z X X X Z Z X
alphabet
Transmitted | [—) [0) [+) [0) [=) [=) [+) [I) [0) [=)
qubits

3. The resulting string of qubits is sent by Alice and received by Bob
(by teleportation)
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The first part of the BB84 protocol

Alice's 1 0 0 0 1 1 0 1 0 1
data bits
Alice's X Z X Z X X X Z Z X
alphabet
Transmitted | [—) [0) [+) [0) [=) [=) [+) [I) [0) [=)
qubits
Bob's X Z X X Z X Z X Z Z
alphabet

4. For each qubit, Bob decides at random which alphabet (axis) to
use for the measurement, z or x.
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The first part of the BB84 protocol

Alice's 1 0 0 0 1 1 0 1 0 1
data bits

Alice's X Z X Z X X X Z Z X
alphabet

Transmitted | [—) [0) [+) [0) [=) [=) [+) [I) [0) [=)
qubits

Bob's X Z X X Z X Z X Z Z
alphabet

Bob's 1 0 0 0 0 1 0 0 0 1
measurement

If Bob chooses the same alphabet as Alice, he gets the same bit value

(if there are no eavesdroppers or noise); this happens on average for half

of his choices. When Bob chooses a different axis, the resulting bit will

agree with the one of Alice only half of the time, on average.
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The first part of the BB84 protocol

Alice's 1 0 0 0 1 1 0 1 0 1
data bits

Alice's X Z X Z X X X Z Z X
alphabet

Transmitted | |=) [0) [+) [0) |=) [=) [+) [1) [0) [=)
qubits

Bob's X Z X X Z X Z X Z Z
alphabet

Bob's 1 0 0 0 0 1 0 0 0 1
measurement

Bob's 1 0 0 0 0 1 0 0 0 1

data bits

85




The first part of the BB84 protocol

5. Bob communicates to Alice over a classical public channel his choices
of the alphabet (but not the results of his measurements!)

6. Alice communicates to Bob over a classical public channel which
alphabet she used for the transmitted qubits.

7. Alice and Bob delete all bits corresponding to the cases in which they
used different alphabets. The remaining bits form the “raw key”.

+ other steps to minimize the effects of eavesdropping and especially noise.
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The first part of the BB84 protocol

Alice's 1 0 0 0 1 1 0 1 0 1
data bits

Alice's X Z X Z X X X Z Z X
alphabet

Transmitted | [—) [0) [+) [0) [=) [=) [+) [I) [0) [=)
qubits

Bob's X Z X X Z X Z X Z Z
alphabet

Bob's 1 0 0 0 0 1 0 0 0 1
measurement

Bob's 1 0 0 0 0 1 0 0 0 1
data bits

Raw key 1 0 0 1 0

The raw key is now: 10010 (in the process, 5 bits out of 10 were lost)
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« IBM Q experience
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IBM Q

IBM Q:
* quantum computing for researchers, www.1bm.com/quantum-computing/

Qiskit:
e open-source quantum computing software development framework,
e qiskit.org

IBM Q account:
 qiskit.org/ibmqgaccount

Tutorials:
e github.com/Qiskit/qgiskit-igx-tutorials.git
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IBM Q backend ibmqx2:

e 5 qubits, 1024 shots

Q——12)

(a) IBM QX2

arXiv:1712.04722v3

IGHZ) =

IBM Q

Q
S
o
e N

Q

-t
o

~——

QO
N
O
—

o—

AN
LA

Running an example: create a 3-qubit entangled state

GHZ (Greenberger-Horne-Zeilinger):

V2

0)2% +1)%°  |000) + |111)

V2



Device information

https://github.com/Qiskit/ibmq-device-information/tree/master/backends/yorktown/V1
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IBM Q

We should have only states (000) and (111) but in reality we see with small
probability other states.

0)¥3 +]1)%*  |000) + |111)

(GHZ) =

V2 V2
0.60 - mm Device
050613 | mmm Simulator
0.487
0.45 1
[
v
=
-gD.BD-
]
-
()
0.15 1
0.01 ey 0.010
0.00 ! ]
0.00 00030 020% oz’ 00050 Mo %l
) Py o Py [ i | L Py
s &§ & & & &8 5 4

The GHZ state
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Extra slides
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Current

Inductor

S . \Microwaves

Superconducting loops
A resistance-free current
oscillates back and forth around
acircuit loop. An injected
microwave signal excites

the current into super-
position states.

Longevity (seconds)
0.00005

Logic success rate
99.4%

Company support
Google, IBM, Quantum Circuits

Laser

Electron

Trapped ions

Electrically charged atoms, or
ions, have quantum energies
that depend on the location of
electrons. Tuned lasers cool
andtrap theions, and put
them in superposition states.

Microwaves

Silicon quantum dots

These “artificial atoms”
are made by adding an
electronto a small piece

of pure silicon. Microwaves
control the electron’s
guantum state.

Topological qubits
Quasiparticles can be seen
in the behavior of electrons
channeled through semi-
conductor structures.Their
braided paths can encode
quantum information.

Microsoft,
Bell Labs

Electron

Laser

Diamond vacancies

A nitrogen atom and a
vacancy add an electronto a
diamond lattice. Its quantum
spin state, along with those
of nearby carbon nuclei,
can be controlled with light.

Quantum Diamond
Technologies

e Magazine, December 2016

C

© Pros
Fast working. Build on existing
semiconductor industry.

© Cons

Collapse easily and must
be kept cold.

Very stable. Highest
achieved gate fidelities.

Slow operation. Many
lasers are needed.

Stable. Build on existing
semiconductor industry.

Only a few entangled.
Must be kept cold.

Greatly reduce
errors.

Existence not yet
confirmed.

Can operate at
room temperature.

Difficult to
entangle.

Note: Longevity is the record coherence time for a single qubit superposition state, logic success rate is the highest reported gate fidelity for logic operations on two qubits,
and number entangled is the maximum number of qubits entangled and capable of performing two-qubit operations.

Gabriel Popkin, Quest



AND, OR, NOT and FANOUT constitute a universal set of gates for
classical computation.

Proof.
The m-bit function is equivalent to m one-bit (or Boolean) functions
fi {0,1}" — {0,1}, (i=1,2,....,m)

where f = (f1, f, ..., fyy). For any values of the input argument
a=(ap_1,an_2,-..-,a1,dp), one way to compute the boolean function f;(a)

is to consider the minterms f}(’)(a), defined as

f;.(") _ {l, if a=all)

0, otherwise
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(cont.)

for instance, if the particular value of al) =110100. .. 001, then f;-('l) can
be defined as follows

f;m —an—1Nap—2/Nap—3Nap—aNan-s/Napn—e/\...NaxANai A\ ag

the one-bit function f; can be calculated for all possible a values as follows

fi(a) =M v Dy v

as the logical OR of all k minterms, with 0 < kK <27 — 1 (2" is the
number of all possible values of the input a). The FANOUT gate is
required to feed the input a to the k minterms.
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(cont.)

Consider the Boolean function f(a), where a = (ap, a1, ap) defined as
follows

a a» | a1 | ao | f(a)

Aa=1]10]0]1] 1

a@=3]0]1]1] 1 F(1) =3, A 31 A ag

a¥=6(1|1]0] 1 [2) s Ao A
tla®=0l0]0]0]| o0 — a2 a1 Ao

28 =210 1 0 0 f(3) =a> A a1 A ap

a® =41 110]0]| 0

AaN=5]110]1] 0

A®—7111]1] o f(a) = FA(a)vF(a)vFB)(a)

. 98
Note: we may have up to 2° = 8 minterms.



The no-cloning theorem

Let us consider two qubits in the states |¢) = «|0) + 5 |1) (generic) and
|¢) (ancillary qubit), the cloning machine in the initial state |A;) and
suppose there is a unitary transformation U such that:

U(l¥) [9) A1) = [9) [9) |Ary) = (@[0) + B 11))(ar|0) + 5 [1)) |Ary)

but at the same time we can write:

U(ld) [9) [Ai) = U((e|0) + B[1)) |9) |Ai)

If we invoke the linearity of quantum mechanics we obtain:

aU([0) |9) [Ai)) + BU([1) |9) |Ai)) = |0} [0) |Aro) + B |1) [1) |Ar1)

which is the entangled state clearly different from the desired cloned state.
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The Bell (EPR) basis

This circuit: f1> H l

i0) D

00) > [¢+) = %uom +111))

transforms the computational

basis states into the Bell states: |10> R |¢—> _ %(mm _ |11>)
01) — [ T) = \%001) +[10))
1)~ [07) = (o)~ [10)

100
(EPR = Einstein-Podolski-Rosen, a paradox about the quantum nature of the reality)
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