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● CERN OpenLab, “Quantum Computing for High Energy Physics Workshop”

5-6 November 2018, CERN 

https://indico.cern.ch/event/719844/  

D-Wave, Rigetti, IBM, Google, Intel, Microsoft, ProjectQ, Strangeworks, ...

“A contribution to the particle physics strategy update 2018-2020”

https://indico.cern.ch/event/765096/contributions/3295802/attachments/

1785308/2906350/QC-HEP-2020.pdf

At CERN

https://indico.cern.ch/event/765096/contributions/3295802/attachments/
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At IN2P3

● Working Group at IN2P3 (within GT09) on quantum information technology:

6 September 2019, Michel-Ange, Paris (a report on the CERN workshop)

https://indico.in2p3.fr/event/19662/

● “Prospectives CNRS/IN2P3 Calcul Algorithmes et Données”

17-18 October 2019, Clermont-Ferrand 

https://indico.in2p3.fr/event/19733/

https://webcast.in2p3.fr/container/journees-prospectives-calcul-algorithmes-et-

donnees

● “Journées thématiques IN2P3 – Quantum computing: state of the art and 

applications”

2-3 December 2019, IPNO, Orsay 

https://indico.in2p3.fr/event/19917/

CEA, Atos, ...

https://indico.in2p3.fr/event/19733/
https://indico.in2p3.fr/event/19917/
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And at CNRS

● “Les débuts de l’ordinateur quantique: principes, promesses, réalisations

et défis”, by Pascale Senellart-Mardon (C2N, Center for Nanoscience and

Nanotechnology)

14 January 2020, IJCLab, Orsay 

https://indico.lal.in2p3.fr/event/5907
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In Europe: Quantum Flagship https://qt.eu
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Summary of the talk

● Classical bits and classical computing 

● Quantum mechanics and quantum bits (qubits)

● Manipulating qubit states, unitary errors

● Quantum gates and circuits

● Quantum teleportation

● Quantum Fourier Transformation

● Quantum cryptography

● IBM Q experience
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Semiconductors

their conductivity can be controlled by doping and gating with electric fields

 By Jurii - http://images-of-elements.com/silicon.php, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=7353911  

a silicon crystal
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https://en.wikipedia.org/wiki/Flip-flop_(electronics)

The flip-flop circuit (a bi-stable circuit)

a device that can store a single bit of data (0 or 1)
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Inverter (0 ⇒1, 1 ⇒ 0) with transistor-transistor logic (TTL)
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Elementary logic gates: one-bit logic gates

f :{0,1}→{0,1}

FANOUT (COPY)

ā = 1−a

NOT

a = a

IDENTITY
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Elementary logic gates: two-bit logic gates

f :{0,1}2→{0,1}

the AND gate:

a∧b = ab
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f :{0,1}2→{0,1}

the OR gate:

a∨b = a+b−ab

Elementary logic gates: two-bit logic gates
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f :{0,1}2→{0,1}

the XOR (exclusive OR) gate:

a⊕b = a+b (mod 2)

Elementary logic gates: two-bit logic gates
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f :{0,1}2→{0,1}

the NAND (negated AND) gate:

a↑b = a∧b = ab = 1−ab

Elementary logic gates: two-bit logic gates
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f :{0,1}2→{0,1}

the NOR (negated OR) gate:

a↓b = a∨b = a+b−ab
= 1−a−b+ab

Elementary logic gates: two-bit logic gates
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A circuit for computing the sum (with carry bit)
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Universal (classical) gates

f : {0,1}m→{0,1}nAny function                                 can be constructed from the elementary gates:

                                            AND, OR, NOT and FANOUT !

We say that AND, OR, NOT and FANOUT constitute a universal set of gates for

the classical computation.

A smaller universal set is NAND and FANOUT:

OR can be obtained from NOT and AND:                              (De Morgan's identities)

and NOT can be obtained from NAND and FANOUT:

a∨b = ā∧b̄

a↑a = a∧a = 1−a2 = 1−a = ā

here we have FANOUT and NAND
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Classical reversible computing

          irreversible function:

          reversible function:

          defined such that:

where x represents m bits, while y and f(x) represent n bits. Since the embedding

function is bijective, it will be reversible! So at the logic level it is possible, with 

the price of introducing more dimensions in the calculations (ancillary bits y).

f : {0,1}m → {0,1}n

It is possible top embed any irreversible function into a reversible function:

~
f :{0,1}m+n → {0,1}m+n

~
f (x , y) = (x ,[ y+ f (x)](mod 2n))

m>n
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A simple reversible classical gate: the controlled-NOT (CNOT)
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the control bit:

the target bit:

reversibility

The circuit representation of the classical CNOT gate

(CNOT )2=I , CNOT−1=CNOT

(a ,b) → (a ,a⊕b) → (a ,a⊕(a⊕b))=(a ,b)
two CNOT gates, applied

one after the other:

so CNOT is self-inverse:

If the target bit is set to 0 (b=0) then CNOT becomes the FANOUT gate:

(a ,0) → (a ,a)

... but two-bit reversible gates are not enough for universal computation !
    We can not construct the NAND gate ...
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Three-bit reversible gates: the Toffoli gate

(controlled-controlled-NOT, or C2NOT)

control bit [0]:

control bit [1]:

target bit [2]:

The Toffoli gate is a universal gate!

a=b=1 , c '=c̄

c=0 , c '=a∧b

a→ ā , b→ b̄ , c=1 , c '=a∨b

NOT:

AND:

OR:
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Quantum bits (qubits)

A qubit is a quantum object: a microscopic system whose state and evolution 

are governed by the laws of quantum mechanics. In order to keep a good 

resemblance with the classical bit, this system will be chosen to have only two 

possible states, corresponding to some (measurable) physical property.

The two states are orthogonal and any arbitrary state the system can be described

as a linear combination (superposition) of those two states:

|α|
2
+|β

2
|=1 α ,β∈ℂ
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The state vector (or wave function) completely describes the state of 

the physical system.

The evolution in time of the state vector 

is governed by the Schrödinger equation:

(H is the Hamiltonian, a self-adjoint operator)

The coefficients α and β multiplying 

the vectors of the computational

basis are functions of time:

The 1st postulate of quantum mechanics

the 6th postulate

ℏ≈6.626×10−34 Joule⋅sec

i=√−1
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Vector algebra with qubits

Since we describe our space with two coordinates, we can write the two basis 
vectors:

= (10) = (01)

and their superposition in the state vector: = α(10)+β(
0
1) = (

α
β )

The vectors

of the computational

basis are normalized

orthogonal

vectors:
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The 2nd postulate of quantum mechanics

We associate with any observable  a self-adjoint operator on the Hilbert 

space of the states. The only possible outcome of a measurement is one of 

the eigen-values of the corresponding operator (3rd postulate).

A single-qubit operator can be represented by a 2x2 matrix:

(described within a given orthonormal vector base)

σ z = (1 0
0 −1)

σ z = (1 0
0 −1) (

1
0) = (10) = +1

σ z = (1 0
0 −1) (

0
1) = ( 0−1) = −1

and        are eigen-vectors of the operator       with eigen-values “+1” and “-1”σ z
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The probability of a given measurement outcome

(the 4th postulate)

If we expand the state vector over the orthonormal basis formed by the 

eigen-vectors of the operator corresponding to the observable:

then the probability that a measurement at time t results in outcome 

“+1” or “-1” is given respectively by:

Note: global phase factors                                 do not affect physical predictions!
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z

The quantified spin and the choice of

the direction of the measurement

σ z = (1 0
0 −1)
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x

z
σ x = (0 1

1 0)

The quantified spin and the choice of

the direction of the measurement
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x

z

y

σ y = (0 −i
i 0 )

The quantified spin and the choice of

the direction of the measurement



32

x

z

y

σ x , σ y , σ z = Pauli matrices (operators), also σ1 , σ2 , σ3

The quantified spin and the choice of

the direction of the measurement
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The eigen-vectors of the spin operators (Pauli)

corresponding to eigen-values “+1” and “-1”
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Circuit symbol representation for a measurement

Note: double line means that this is a classical information (a bit).
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The 5th postulate of quantum mechanics

If a system is described by the state vector 

and we measure σ
z
 obtaining the outcome (spin projection) +1 or -1,

then immediately after the measurement the state of the system is 

given by the eigen-vector corresponding to the eigen-value:       or 

      respectively.

The expected value of an observable will be (4th postulate):

from the outcome probabilities:

with the projector operators:
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x

z

y

Before the measurement of the z spin component
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z

After the measurement

z

or
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The Stern-Gerlach experiment

 http://web.stanford.edu/class/rad226a/Lectures/Lecture5-2017-Quantum-III.pdf   
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Contrary to the classical case, it is not possible to clone (COPY or FANOUT) 

a generic quantum state.

The equivalent of this:                              does not exist in the quantum case.

It is impossible to build a machine that operates unitary transformations and

is able to clone the generic state of a qubit.

This has important consequences and leads to interesting consequences like

the possibility of doing quantum cryptography. 

The possibility of cloning would also invalidate the uncertainty relation of 

Heisenberg because it would be possible to simultaneously measure with 

infinite precision two physical properties of the system on two identical copies 

of the same quantum state.

The no-cloning theorem
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Flipping a qubit using a constant magnetic field

The Schrödinger equation:

The time-evolution operator:

The Hamiltonian of a spin interacting with a magnetic field is:

and in this particular case U is a unitary operator:  
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Flipping a qubit with a constant magnetic field

Using the

notations:

We obtain for the

time-evolution

operator this:
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Flipping a qubit with a constant magnetic field

For instance, with a magnetic field:

We can flip the state       into the state       :

Which is fulfilled if:
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Unitary errors

Any quantum computation is given by a sequence of quantum gates applied to 

some initial state:

If the errors are unitary (no coupling to the environment, but any realistic 

implementation of a unitary operation will involve some error, since unitary 

operators form a continuous set), instead of operators U
i
 we apply slightly 

different operators V
i
:
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Back to the general case, after n iterations we obtain:

Unitary errors

For instance, in the previous qubit flip example

instead of

we will have

with a limit of the error:

σ
2
=∑
i=1

n

σ i
2

→ σ < √n ϵIn the “classical” case we have:
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Single-qubit gates σ x , σ y , σ z
(Pauli operators)
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The Hadamard gate

Transforms the 

computational basis:
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The exponential power of the states superposition

A network of 3 qubits: 

the application of the 3 Hadamard 

gates is synchronized and in the total 

product state we have a superposition 

of the values from 0 to 7.
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The generic state of a qubit in spherical coordinates

We can write this because:

● the two coefficients  and  are complex α and β are complex β are complex 

● we have the total probability normalization condition

● a state vector is defined only up to a global phase of no physical significance

(we can take one of the coefficients pure real)
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The phase-shift gate
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Universality of Hadamard and phase-shift gates

Any unitary operation on a single qubit can be constructed using only

Hadamard and phase-shift gates. In particular, the generic state can be 

reached starting from      in the following way:
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Two-qubit states and gates

α
2
+β

2
+γ

2
+δ

2
=1

The total vector space of the two qubits is the result of a tensor product,

the computational base of the resulting space is given by the 4 possible 

combinations by tensor product of the computational basis of each of the 

two qubits.
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The quantum (two-qubit) CNOT gate

The state of target qubit (y) flips only if the control qubit (x) is in the        state.
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Obtaining a SWAP gate from CNOT gates

=

The CNOT gate generates entanglement of two qubits

(the final state is non-separable, can not be expressed as a

single product of two single qubit states)
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Universal quantum gates

Any unitary operation in the Hilbert space of n qubits, U(n) can be 

decomposed into one-qubit gates and two-qubit CNOT gates.

● we need few more special gates, like the 

controlled-U gate, where the U operator is 

applied to the target qubit only if the control 

qubit is in the       stat.

● the controlled-U gate can be generalized to the 

Ck-U gate, with k control qubits.

● a particular Ck-U is the C2-NOT gate, or Toffoli gate; implementing the 

Toffoli gate can be done using CNOT, Hadamard and the unitary operator V

.....
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where

Implementing the Toffoli gate
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Universal quantum gates

Finally we come to the following conclusion:

● a generic operator U(n) can be decomposed by means of Ck-U gates

● any Ck-U gate (k > 2) can be decomposed into Toffoli and controlled-U gates

● the C2-NOT gate (Toffoli) can be implemented using CNOT, controlled-U and 

Hadamard gates

● for any single-qubit rotation U, the controlled-U operation can be decomposed 

into single-qubit and CNOT gates
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Un précurseur de la théorie atomique
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George Seurat, Une dimanche après-midi à l'Île de la Grande Jatte (Wikimedia Commons)
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Essai Philosophique sur les Probabilités, 1814

Smithsonian Libraries

gallica.bnf.fr
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Alice owns a two level system in some unknown state: 

and wishes to send this qubit state to Bob using only a classical communication 

channel (we know that Alice can not clone that state into a quantum copy).

Alice can not simply measure the state, because it will immediately destroy 

that state with the price of obtaining only one bit of information (describing 

the generic state requires an infinite amount of classical information).

Quantum teleportation is possible, providing that Alice and Bob share an 

entangled pair of qubits.

For instance, starting from the computational basis we can create the 

entangled state of two qubits in this way: 

Quantum information: teleportation

(Bell pair)
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Quantum information: teleportation

The three qubit state obtained by putting in the same register the two qubits 

and the qubit to be cloned is given by the tensor product:

Alice will let her qubit interact with her half of the Bell pair, which means 

that she will perform a measurement not in the computational basis but 

in the Bell basis.
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The three-qubit state can be written in the Bell basis after some transformations:

Quantum information: teleportation

and after the application of the two last gates                           we obtain:

Alice the Bell pair
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bit
0

bit
1

Quantum information: teleportation

q
2

q
1

q
0

Finally, Alice makes a measurement on his two qubits and sends the 

result to Bob, in the form of two classical bits (0, 1) which correspond to 

the computational basis.
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Quantum information: teleportation

If Bob chooses to apply a unitary operator U to his qubit according to the 

pair of bits sent by Alice as in next table, he will obtain exactly the initial 

generic state which Alice wanted to transmit:
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The Fourier Transformation, continuous and discrete

direct, time domain to 
frequence domain

inverse, frequence domain to 
time domain

(DFT)
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The Fast Fourier Transformation (FFT)

(1)

(2)

(3)

(4)

O (N 2
) complexity
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The QFT

We want to do a discrete transformation of a vector of N complex values :

We start by building a generic state with n = log
2
N qubits, written in the 

computational basis as :

where a vector of the computational basis is the tensor product :

(superposition)
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The QFT

We define the following unitary operator F acting on the states of the

computational basis as follows :

such that an arbitrary state is transformed into :

with the coefficients being the discrete transformation :
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The QFT

If we introduce the notations for the binary representation of

the indices of of the states of the computational basis: 

then, after few steps, we obtain the product representation of the FT:

Note that this state is not entangled, it is factorized in n single qubit states.
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The quantum circuit for the QFT

with the operator

It is using n Hadamard gates and n(n-1)/2 single qubit gates, 

so the computation requires O(n2) elementary quantum gates.

The FFT on a vector of N = 2n complex values, needs O(N logN) 

elementary operations ! The DFT needs O(N2) operations.
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The RSA public-key cryptosystem

(Rivest-Shamir-Adleman, 1977)

It is based on the number theory, in particular on the prime

factorization of a very large number used in a trapdoor one-way function.

                                          e = private key

                                          d = public key

But the realization of an efficient quantum processor would break 

this inviolability (like the Shor algorithm).

c=me(mod n) , m=cd(modn) , ed≡1(modΦ(n))

Φ(n)=( p−1)(q−1) , n=pq , p , q primenumbers
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The unbreakable cypher

Gilbert Vernam (1917)

● the text is written as a binary sequence 

of 0’s and 1’s

● the secret key is a completely random binary 

sequence of the same length as the text

● the cypher text is obtained by adding the 

secret key bitwise module 2 to the plain text

and to go back to the text

Note: a key must not be reused

for another message!
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The unbreakable cypher

● the secret key has to be unique for each message

● the secret key must have the same length as the message

● the problem is not the transmission of the cypher text but

the distribution of a large number of secret keys

● even by brute force it is impossible to guess the original message

Alice Bob

0 1 1 0 0 1 0 0 0 1 1 1 …. 0 1 0 0 1 1 1 1 0 0



79

The BB84 (quantum) protocol

Bennett and Brassard, 1984

BB84 is using four quantum states of a single qubit and it is coding the

classical bits into states of a qubit using two alphabets:

which are the eigen-states of the Pauli matrices         and         respectively

(the z-alphabet and the x-alphabet), a pair on non-commuting observables.

0 =

, z-alphabet

, x-alphabet

1 =

, z-alphabet

, x-alphabet
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The first part of the BB84 protocol

1. Alice generates a random sequence of 0’s and 1’s
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The first part of the BB84 protocol

2. Alice encodes each data bit in a qubit, by choosing

Randomly between the z- and the x-alphabet
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The first part of the BB84 protocol

3. The resulting string of qubits is sent by Alice and received by Bob

(by teleportation)
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The first part of the BB84 protocol

4. For each qubit, Bob decides at random which alphabet (axis) to

use for the measurement, z or x.
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The first part of the BB84 protocol

If Bob chooses the same alphabet as Alice, he gets the same bit value

(if there are no eavesdroppers or noise); this happens on average for half

of his choices. When Bob chooses a different axis, the resulting bit will 

agree with the one of Alice only half of the time, on average.
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The first part of the BB84 protocol



86

The first part of the BB84 protocol

5. Bob communicates to Alice over a classical public channel his choices

of the alphabet (but not the results of his measurements!)

6. Alice communicates to Bob over a classical public channel which 

alphabet she used for the transmitted qubits.

7. Alice and Bob delete all bits corresponding to the cases in which they

used different alphabets. The remaining bits form the “raw key”.

+ other steps to minimize the effects of eavesdropping and especially noise.
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The first part of the BB84 protocol

The raw key is now: 10010 (in the process, 5 bits out of 10 were lost)
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IBM Q:  
● quantum computing for researchers, www.ibm.com/quantum-computing/

Qiskit: 
● open-source quantum computing software development framework, 
● qiskit.org

IBM Q account: 
● qiskit.org/ibmqaccount

Tutorials: 
● github.com/Qiskit/qiskit-iqx-tutorials.git

IBM Q
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Running an example: create a 3-qubit entangled state

GHZ (Greenberger-Horne-Zeilinger):

IBM Q

IBM Q backend ibmqx2: 

● 5 qubits, 1024 shots

   arXiv:1712.04722v3
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Device information

https://github.com/Qiskit/ibmq-device-information/tree/master/backends/yorktown/V1
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We should have only states (000) and (111) but in reality we see with small 

probability other states.

The GHZ state

IBM Q
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= T + h +a + n + k + Y + o + u + !
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Extra slides
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(cont.)
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Note: we may have up to 23 = 8 minterms.

(cont.)
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The no-cloning theorem
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The Bell (EPR) basis

This circuit:

transforms the computational

basis states into the Bell states:

(EPR = Einstein-Podolski-Rosen, a paradox about the quantum nature of the reality)
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