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Conformal compactification

Notion introduced by Roger Penrose in the 1960’s.
Purpose : on a “generic asymptotically flat spacetime”

Asymptotic behaviour of fields along outgoing light rays ;

Peeling of test fields ;

Definition of generic asymptotically flat spacetimes ;

Sachs peeling.
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General principle

Ingredients :

“Physical” spacetime : (M, g) smooth, 4-dimensional, real,
Lorentzian manifold.

“Unphysical” spacetime : M̄ = M∪B.
M̄ smooth manifold with boundary B.
B = I + ∪I −, I ± ' R× S2.

Conformal factor : Ω > 0 on M, smooth on M̄,
Ω|B = 0, dΩ|B 6= 0.

Rescaled metric : ĝ := Ω2g is a smooth non degenerate
Lorentzian metric on M̄.

Scri : I ± are smooth null hypersurfaces of (M̄, ĝ).
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Flat spacetime

Minkowski spacetime : M = Rt × R3 with the Minkowski metric

η := dt2 − dr2 − r2dω2 , dω2 = dθ2 + sin2 θdϕ2 .

τ = arctan(t + r) + arctan(t − r) ,

ζ = arctan(t + r)− arctan(t − r) .

M is described as

{|τ |+ ζ < π , ζ > 0} × S2
ω .

η takes the new expression

η =
(1 + (t + r)2)(1 + (t − r)2)

4

(
dτ2 − dζ2

)
− r2dω2 .
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Flat spacetime

We choose the conformal factor

Ω2 =
4

(1 + (t + r)2)(1 + (t − r)2)
.

We rescale the metric using it :

η̂ := Ω2η = dτ2 − dζ2 − (sin ζ)2 dω2

= dτ2 − σ2
S3 ,

where σ2
S3 is the euclidian metric on the 3-sphere.

Einstein cylinder : E = Rτ × S3 equipped with η̂.
{M , η̂} is a submanifold of {E , η̂}.
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Flat spacetime

Boundary of M in E

I ± = {0 < ζ < π , τ = ±(π − ζ)}, future and past null
infinities ;

i± = (τ = ±π, ζ = 0), future and past timelike infinities,

i0 = (τ = 0, ζ = π), spacelike infinity.
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Flat spacetime

Interpretation of the boundary of M in E .

Null lines : γu,ω0(r) = (t = r + u, r , ω = ω0)
end up on I ± as t → ±∞.

Timelike lines : βλ,u,ω0(r) = (t = λr + u, r , ω = ω0) with
λ > 1
end up at i± as t → ±∞.

Spacelike lines : βλ,u,ω0(r) = (t = λr + u, r , ω = ω0) with
0 < λ < 1
end up at i0 as t → ±∞.
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Applications in flat spacetime

Conformally invariant equation : e.g. (�g + 1
6Scalg )f = 0

�ηf = 0 ⇔ �η̂ f̂ + f̂ = 0

where f̂ = Ω−1f : rescaled field.

Trace properties for f̂ at the boundary of M
m

Asymptotic properties for f at infinity
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Applications in flat spacetime

Smooth data for f̂ : f̂ |τ=0 , ∂τ f̂ |τ=0 ∈ C∞(S3)
Unique global solution f̂ ∈ C∞(R× S3)

Pointwise decay of f : for r , ω constant, t →∞,

Ω ' 1/t2 .

⇒ f (t, r0, ω0) ' 1/t2 .

Decay of f along outgoing light rays : for u, ω constant,
t = r + u, r →∞,

Ω ' 1/t .

⇒ f (t, t − u0, ω0) ' 1/t .
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Valid for which solutions?

Away from i0, we have

f̂ |τ=0 =
1 + r2

2
f |t=0

∂τ f̂ |τ=0 =
(1 + r2)2

4
∂t f |t=0

Smoothness of data for f̂
⇓

Fall-off assumptions on data for f

f (0, r , ω0) ' 1/r2 , ∂t f (0, r , ω0) ' 1/r4

and so on. Ck data less stringent.
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More applications?

Behaviour along outgoing radial light rays :

Basic question : asymptotic profiles

r f (t = r + u, r , ω) → φ+
u,ω , r → +∞ .

First generalization : scattering

r f (t = r + u, r , ω) → φ+
u,ω

globally in a Hilbert space on Ru × S2
ω.

Second generalization : peeling

F (u,R, ω) :=
1

R
f (t =

1

R
+ u,

1

R
, ω)

extends as a smooth function on Ru × [0,+∞[R×S2
ω.
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Yes.

Scattering and peeling in flat spacetime can both be proved using
conformal techniques, provided we work with conformally invariant
equations.
Peeling : Penrose 1965.
Scattering : Friedlander 1980, 2000, Baez, Segal, Zhou 1990.
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Application to scattering

Framework : asymptotically simple spacetimes
Spacetimes (M, g) diffeomorphic to Minkowski space ;
∃Ω s.t. (M̄, ĝ) has smooth I ± and i±.
Advantage of the conformal approach :

All that matters is the asymptotic structure,
time dependence is no problem.

Limitations :

“nice” asymptotic structure
(Is it really a limitation? Yes for now.) ;

conformally invariant equations
(Is it really a limitation? Yes for now.).
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Description of the method

Consider a conformally invariant equation, e.g. Dirac’s equation
(M, g) asymptotically simple space-time, Ω conformal factor,
(M̄, ĝ) rescaled spacetime.
φ Dirac field on (M, g), φ̂ rescaled Dirac field.

Step 1. Trace operators T± on I ±

Smooth data with compact support at t = 0,
trace on I ± for φ̂ trivial ;
Energy estimates both ways between {t = 0}
and I ± ;
Entail T± extend to minimum regularity (L2),
are injective with closed range.

Step 2. Surjectivity of trace operators (range dense in L2)

Scattering operator : S := T+(T−)−1.
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Remarks

1. Scattering theory with wave operators and comparison dynamics
of asymptotic profile type.

2. Step 2 is the difficult one : solution of a Goursat problem.
Method due to Hörmander (JFA, 1990)

based on energy estimates ;

reduction to the Cauchy problem.

Additional difficulty : data on a null hypersurface are “lighter”.
Data must be added when reducing to the Cauchy problem (not at
random!).
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State of the art

Conformal scattering.

Friedlander 1980, 2000, ideas put forward in the flat case.
Baez, Segal, Zhou 1990’s, explicit constructions in the flat case.
Mason, Nicolas 2004, generic geometries, Dirac, Maxwell, wave.

Goursat problem.

Penrose 1963, flat space integral formulae ;
Friedlander 1975, wave equation on curved spacetimes ;
Hörmander 1990, simple approach ;

Nicolas 2006, extension of Hörmander 1990 to low regularity.

Perspectives.

Joudioux Extension of Penrose’s results to general curved
spacetimes ; conformal scattering for non linear
equations (curved case) ;

Projects Conformal scattering for black hole spacetimes ; for
non conformally invariant equations.
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Application to peeling : some history

Sachs peeling. Fall-off of components of the curvature along null
directions.
Peeling of test fields. Penrose 1965, regularity of rescaled fields at
null infinity.
Peeling as a conjecture. Penrose 1965? He says no...
Question : on a given asymptotically simple spacetime, what is the
class of initial data for a given field equation which guarantees
smoothness across I of the rescaled field?
Penrose’s approach suggests that he thinks : the same as in flat
spacetime, provided the spacetime is “generic”.
Big controversy for more than 40 years. Counterexamples (wrong!).
In the simplest non flat case (Schwarzschild metric), question
unsolved.
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Peeling in flat spacetime

C∞ case. Trivial with conformal techniques (that’s the point).
Intermediate regularity. Ck is a bad choice. Hk is good.
Trivial by conformal techniques + vector field methods.
Method (wave equation) : �η̂ψ + ψ = 0 on E

Energy equality between {τ = 0} and I + ;

Commute ∂k
τ in the equation

‖∂k
τ ψ|I +‖2Hk (I +) = ‖∂τψ(τ = 0)‖2Hk (S3)+‖ψ(τ = 0)‖2Hk+1(S3) .

⇒ new definition of the peeling at a given order.
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The Schwarzschild case

L. Mason, J.-P. Nicolas, 2009.
We lose the essential structure : smooth i0.
Similar method :

Conformal compactification, the simplest ;

Choice of energy (Morawetz vector field adapted,
Dafemos-Rodnianski) ;

Choice of vector field to increase regularity (null radial
outgoing).

Penrose’s intuition confirmed at all orders.
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Perspectives

Extension to generic asymptotically flat spacetimes.
Other equations (spinorial, non linear).
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