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V. Jakšić (McGill University)

L. Rey-Bellet (University of Massachusetts, Amherst)

mostly based on works by

Cohen, Evans, Gallavotti, Kurchan, Lebowitz, Morriss, Searles, Spohn, . . .

GDR-QD Lyon (September 2009) – p. 1



Overview

GDR-QD Lyon (September 2009) – p. 2



Overview

• Classical framework

GDR-QD Lyon (September 2009) – p. 2



Overview

• Classical framework
• Entropy production

GDR-QD Lyon (September 2009) – p. 2



Overview

• Classical framework
• Entropy production

• Entropic fluctuations: The Evans-Searles theorem

GDR-QD Lyon (September 2009) – p. 2



Overview

• Classical framework
• Entropy production

• Entropic fluctuations: The Evans-Searles theorem

• Entropic fluctuations: The generalized Evans-Searles theorem

GDR-QD Lyon (September 2009) – p. 2



Overview

• Classical framework
• Entropy production

• Entropic fluctuations: The Evans-Searles theorem

• Entropic fluctuations: The generalized Evans-Searles theorem

• Linear response: Finite time

GDR-QD Lyon (September 2009) – p. 2



Overview

• Classical framework
• Entropy production

• Entropic fluctuations: The Evans-Searles theorem

• Entropic fluctuations: The generalized Evans-Searles theorem

• Linear response: Finite time

• Nonequilibrium steady states (NESS)

GDR-QD Lyon (September 2009) – p. 2



Overview

• Classical framework
• Entropy production

• Entropic fluctuations: The Evans-Searles theorem

• Entropic fluctuations: The generalized Evans-Searles theorem

• Linear response: Finite time

• Nonequilibrium steady states (NESS)

• Linear response: The large time limit

GDR-QD Lyon (September 2009) – p. 2



Overview

• Classical framework
• Entropy production

• Entropic fluctuations: The Evans-Searles theorem

• Entropic fluctuations: The generalized Evans-Searles theorem

• Linear response: Finite time

• Nonequilibrium steady states (NESS)

• Linear response: The large time limit

• The Central Limit Theorem – Fluctuation-Dissipation

GDR-QD Lyon (September 2009) – p. 2



Overview

• Classical framework
• Entropy production

• Entropic fluctuations: The Evans-Searles theorem

• Entropic fluctuations: The generalized Evans-Searles theorem

• Linear response: Finite time

• Nonequilibrium steady states (NESS)

• Linear response: The large time limit

• The Central Limit Theorem – Fluctuation-Dissipation

• Entropic fluctuations: The limiting Evans-Searles symmetry

GDR-QD Lyon (September 2009) – p. 2



Overview

• Classical framework
• Entropy production

• Entropic fluctuations: The Evans-Searles theorem

• Entropic fluctuations: The generalized Evans-Searles theorem

• Linear response: Finite time

• Nonequilibrium steady states (NESS)

• Linear response: The large time limit

• The Central Limit Theorem – Fluctuation-Dissipation

• Entropic fluctuations: The limiting Evans-Searles symmetry

• Entropic fluctuations: The Gallavotti-Cohen symmetry

GDR-QD Lyon (September 2009) – p. 2



Overview

• Classical framework
• Entropy production

• Entropic fluctuations: The Evans-Searles theorem

• Entropic fluctuations: The generalized Evans-Searles theorem

• Linear response: Finite time

• Nonequilibrium steady states (NESS)

• Linear response: The large time limit

• The Central Limit Theorem – Fluctuation-Dissipation

• Entropic fluctuations: The limiting Evans-Searles symmetry

• Entropic fluctuations: The Gallavotti-Cohen symmetry

• Lp-Liouvilleans

GDR-QD Lyon (September 2009) – p. 2



Overview

• Classical framework
• Entropy production

• Entropic fluctuations: The Evans-Searles theorem

• Entropic fluctuations: The generalized Evans-Searles theorem

• Linear response: Finite time

• Nonequilibrium steady states (NESS)

• Linear response: The large time limit

• The Central Limit Theorem – Fluctuation-Dissipation

• Entropic fluctuations: The limiting Evans-Searles symmetry

• Entropic fluctuations: The Gallavotti-Cohen symmetry

• Lp-Liouvilleans
• Spectral characterization of the ES and GC functions

GDR-QD Lyon (September 2009) – p. 2



Overview

• Classical framework
• Entropy production

• Entropic fluctuations: The Evans-Searles theorem

• Entropic fluctuations: The generalized Evans-Searles theorem

• Linear response: Finite time

• Nonequilibrium steady states (NESS)

• Linear response: The large time limit

• The Central Limit Theorem – Fluctuation-Dissipation

• Entropic fluctuations: The limiting Evans-Searles symmetry

• Entropic fluctuations: The Gallavotti-Cohen symmetry

• Lp-Liouvilleans
• Spectral characterization of the ES and GC functions

• The principle of regular entropic fluctuations

GDR-QD Lyon (September 2009) – p. 2



Overview

• Classical framework
• Entropy production

• Entropic fluctuations: The Evans-Searles theorem

• Entropic fluctuations: The generalized Evans-Searles theorem

• Linear response: Finite time

• Nonequilibrium steady states (NESS)

• Linear response: The large time limit

• The Central Limit Theorem – Fluctuation-Dissipation

• Entropic fluctuations: The limiting Evans-Searles symmetry

• Entropic fluctuations: The Gallavotti-Cohen symmetry

• Lp-Liouvilleans
• Spectral characterization of the ES and GC functions

• The principle of regular entropic fluctuations

• A list of examples

GDR-QD Lyon (September 2009) – p. 2



Overview

• Classical framework
• Entropy production

• Entropic fluctuations: The Evans-Searles theorem

• Entropic fluctuations: The generalized Evans-Searles theorem

• Linear response: Finite time

• Nonequilibrium steady states (NESS)

• Linear response: The large time limit

• The Central Limit Theorem – Fluctuation-Dissipation

• Entropic fluctuations: The limiting Evans-Searles symmetry

• Entropic fluctuations: The Gallavotti-Cohen symmetry

• Lp-Liouvilleans
• Spectral characterization of the ES and GC functions

• The principle of regular entropic fluctuations

• A list of examples

• And what about quantum dynamics ?
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Measurable dynamical system with decent metric properties (M,F , φt, µ)

• Phase space (M,F): complete separable metric space with Borel σ-field.

• Dynamics (φt)t∈R: continuous group of homeomorphisms of M .

• State µ: µ ∈ P , the space of Borel probability measures on (M,F).

• Observables f : f ∈ B, the space of bounded measurable real functions on M .

• Time-reversal: ϑ continuous involution of M s.t. φt ◦ ϑ = ϑ ◦ φ−t.

Notation: For ν ∈ P , f ∈ B and t ∈ R

ν(f) =

Z

M

fdν

f t = f ◦ φt, νt(f) = ν(f t)
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Measurable dynamical system with decent metric properties (M,F , φt, µ)

• Phase space (M,F): complete separable metric space with Borel σ-field.

• Dynamics (φt)t∈R: continuous group of homeomorphisms of M .

• State µ: µ ∈ P , the space of Borel probability measures on (M,F).

• Observables f : f ∈ B, the space of bounded measurable real functions on M .

• Time-reversal: ϑ continuous involution of M s.t. φt ◦ ϑ = ϑ ◦ φ−t.

Notation:
PI = {ν ∈ P | ∀t ∈ R, νt = ν} (steady states)

Pµ = {ν ∈ P | ν ≪ µ} (µ-normal states)

For ν ∈ Pµ : ∆ν|µ =
dν

dµ
, ℓν|µ = log ∆ν|µ
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Measurable dynamical system with decent metric properties (M,F , φt, µ)

• Phase space (M,F): complete separable metric space with Borel σ-field.

• Dynamics (φt)t∈R: continuous group of homeomorphisms of M .

• State µ: µ ∈ P , the space of Borel probability measures on (M,F).

• Observables f : f ∈ B, the space of bounded measurable real functions on M .

• Time-reversal: ϑ continuous involution of M s.t. φt ◦ ϑ = ϑ ◦ φ−t.

Relative entropy: For ω, ν ∈ P

0 ≥ Ent(ω|ν) = − sup
f∈B

“

ω(f) − log ν(ef )
”

=

(

−∞ if ω 6∈ Pν

−ω(ℓω|ν) if ω ∈ Pν
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0. Classical Framework

Measurable dynamical system with decent metric properties (M,F , φt, µ)

• Phase space (M,F): complete separable metric space with Borel σ-field.

• Dynamics (φt)t∈R: continuous group of homeomorphisms of M .

• State µ: µ ∈ P , the space of Borel probability measures on (M,F).

• Observables f : f ∈ B, the space of bounded measurable real functions on M .

• Time-reversal: ϑ continuous involution of M s.t. φt ◦ ϑ = ϑ ◦ φ−t.

Basic assumptions:

(REG) ∀t ∈ R, µt ∈ Pµ and σ =
d

dt
ℓµt|µ

˛

˛

˛

˛

t=0

is continuous on M

(TRI) ∀f ∈ B, µ(f ◦ ϑ) = µ(f)
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1. Entropy production

Proposition. (The cocycle property) For all s, t ∈ R one has
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ℓµt+s|µ = ℓµt|µ + ℓµs|µ ◦ φ−t

Corollary. Under ou basic assumption (REG)

ℓµt|µ =

Z t

0
σ−s ds

and hence one has the entropy balance equation

Ent(µt|µ) − Ent(µ|µ) = −µt(ℓµt|µ) = −
Z t

0
µ(σs) ds
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1. Entropy production

Proposition. (The cocycle property) For all s, t ∈ R one has

ℓµt+s|µ = ℓµt|µ + ℓµs|µ ◦ φ−t

Corollary. Under ou basic assumption (REG)

ℓµt|µ =

Z t

0
σ−s ds

and hence one has the entropy balance equation

Ent(µt|µ) − Ent(µ|µ) = −µt(ℓµt|µ) = −
Z t

0
µ(σs) ds

↓

Mean entropy production rate over the period [0, t]

−1

t
Ent(µt|µ) =

1

t

Z t

0
µ(σs) ds ≥ 0
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2. Entropic fluctuations: The Evans-Searles theorem

St =
1

t

Z t

0
σs ds =

1

t
ℓµt|µ ◦ φt (mean entropy production rate observable)
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St =
1

t

Z t

0
σs ds =

1

t
ℓµt|µ ◦ φt (mean entropy production rate observable)

P t(f) = µ(f(St)) P
t
(f) = µ(f(−St)) (distributions of St and −St)

Theorem. (Evans-Searles [1994] or transient fluctuation theorem) Under assumptions
(REG) and (TRI) negative values of St become exponentially rare as t → ∞ (dynamical
form of 2nd law !). More precisely one has

dP
t

dP t
(s) = e−ts
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St =
1

t

Z t

0
σs ds =

1

t
ℓµt|µ ◦ φt (mean entropy production rate observable)

P t(f) = µ(f(St)) P
t
(f) = µ(f(−St)) (distributions of St and −St)

Theorem. (Evans-Searles [1994] or transient fluctuation theorem) Under assumptions
(REG) and (TRI) negative values of St become exponentially rare as t → ∞ (dynamical
form of 2nd law !). More precisely one has

dP
t

dP t
(s) = e−ts

Proof. (TRI) ⇒ µt(f ◦ ϑ) = µ−t(f) ⇒ σ ◦ ϑ = −σ ⇒ ℓµt|µ ◦ ϑ = −St

P
t
(f) = µ

„

f

„

−1

t
ℓµt|µ ◦ φt

««

= µt

„

f

„

−1

t
ℓµt|µ

««

= µ

„

f

„

−1

t
ℓµt|µ

«

e
ℓ
µt|µ

«

= µ

„

f

„

−1

t
ℓµt|µ ◦ ϑ

«

e
ℓ
µt|µ◦ϑ

«

= µ
“

f (St) e−tSt

”

= P t(fe−ts)
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t
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0
σs ds =
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t
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(s) = e−ts

Define the ES function

et(α) = µ
“

e−α
R

t
0

σs ds
”

= µ
“

e−αtSt
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2. Entropic fluctuations: The Evans-Searles theorem

St =
1

t

Z t

0
σs ds =

1

t
ℓµt|µ ◦ φt (mean entropy production rate observable)

P t(f) = µ(f(St)) P
t
(f) = µ(f(−St)) (distributions of St and −St)

Theorem. (Evans-Searles [1994] or transient fluctuation theorem) Under assumptions
(REG) and (TRI) negative values of St become exponentially rare as t → ∞ (dynamical
form of 2nd law !). More precisely one has

dP
t

dP t
(s) = e−ts

Define the ES function

et(α) = µ
“

e−α
R

t
0

σs ds
”

= µ
“

e−αtSt

”

Alternative formulation of the ES theorem: the ES symmetry

et(1 − α) = et(α)
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3. Entropic fluctuations: The generalized ES theorem

Assume we have some contol of our dynamical system

R
n ∋ X 7→ (M,F , φt

X , µX)
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Assume we have some contol of our dynamical system

R
n ∋ X 7→ (M,F , φt

X , µX)

• µ0 is φt
0-invariant, i.e., X = 0 represent some equilibrium situation.

• X 7→ σX is C1 near X = 0, then

σX = X · ΦX =

n
X

j=1

XjΦ
(j)
X

and ΦX = (Φ
(1)
X

, . . . , Φ
(n)
X

) is the vector of current observables, the current Φ
(j)
X

being associated to the force Xj .
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Assume we have some contol of our dynamical system

R
n ∋ X 7→ (M,F , φt

X , µX)

• µ0 is φt
0-invariant, i.e., X = 0 represent some equilibrium situation.

• X 7→ σX is C1 near X = 0, then

σX = X · ΦX =

n
X

j=1

XjΦ
(j)
X

and ΦX = (Φ
(1)
X

, . . . , Φ
(n)
X

) is the vector of current observables, the current Φ
(j)
X

being associated to the force Xj .

• ϑ is idependant of X, then

ΦX ◦ ϑ = −ΦX µ0(Φ0) = 0
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3. Entropic fluctuations: The generalized ES theorem

P t
X(f) = µ

„

f

„

1

t

Z t

0
Φs

X ds

««

P
t
X(f) = µ

„

f

„

−1

t

Z t

0
Φs

X ds

««
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3. Entropic fluctuations: The generalized ES theorem

P t
X(f) = µ

„

f

„

1

t

Z t

0
Φs

X ds

««

P
t
X(f) = µ

„

f

„

−1

t

Z t

0
Φs

X ds

««

Theorem. (Generalized ES fluctuation theorem) Under our assumptions, as t → ∞ the
currents flow mostly in definite directions

dP
t
X

dP t
X

(Φ(1), . . . , Φ(n)) = exp

0

@−t

n
X

j=1

XjΦ
(j)

1

A
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Theorem. (Generalized ES fluctuation theorem) Under our assumptions, as t → ∞ the
currents flow mostly in definite directions

dP
t
X

dP t
X

(Φ(1), . . . , Φ(n)) = exp

0

@−t

n
X

j=1

XjΦ
(j)

1

A

Equivalently the generalized ES function

gt(X, Y ) = µX

“

e−Y ·
R

t
0

Φs
X ds

”
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3. Entropic fluctuations: The generalized ES theorem

P t
X(f) = µ

„

f

„

1

t

Z t

0
Φs

X ds

««

P
t
X(f) = µ

„

f

„

−1

t

Z t

0
Φs

X ds

««

Theorem. (Generalized ES fluctuation theorem) Under our assumptions, as t → ∞ the
currents flow mostly in definite directions

dP
t
X

dP t
X

(Φ(1), . . . , Φ(n)) = exp

0

@−t

n
X

j=1

XjΦ
(j)

1

A

Equivalently the generalized ES function

gt(X, Y ) = µX

“

e−Y ·
R

t
0

Φs
X ds

”

satisfies the generalized ES symmetry

gt(X, X − Y ) = gt(X, Y )
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4. Linear response: Finite time

If

X 7→ 〈ΦX〉t =
1

t

Z t

0
µX(Φs

X) ds

is differentiable at X = 0
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4. Linear response: Finite time

If

X 7→ 〈ΦX〉t =
1

t

Z t

0
µX(Φs

X) ds

is differentiable at X = 0 we set

Lt
jk = ∂Xk

〈Φ(j)
X

〉t
˛

˛

˛

X=0
(finite time transport matrix)
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4. Linear response: Finite time

If

X 7→ 〈ΦX〉t =
1

t

Z t

0
µX(Φs

X) ds

is differentiable at X = 0 we set

Lt
jk = ∂Xk

〈Φ(j)
X

〉t
˛

˛

˛

X=0
(finite time transport matrix)

Theorem. (Finite time Green-Kubo formula and Onsager reciprocity relations) Assume
that (X, Y ) 7→ gt(X, Y ) is C2 near (0, 0). Then

Lt
jk =

1

2

Z t

−t

µ0

“

Φ
(k)
0 Φ

(j)s
0

”

„

1 − |s|
t

«

ds

and in particular the finite time transport matrix is symmetric (Onsager Reciprocity).
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4. Linear response: Finite time

Remark. The following shows that the transport matrix is non-negative.

0 ≤ 〈σX〉t =

n
X

j=1

Xj〈Φ(j)
X

〉t =

n
X

j,k=1

Lt
jkXjXk + o(|X|2)
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4. Linear response: Finite time

Remark. The following shows that the transport matrix is non-negative.

0 ≤ 〈σX〉t =

n
X

j=1

Xj〈Φ(j)
X

〉t =

n
X

j,k=1

Lt
jkXjXk + o(|X|2)

Proof of the theorem. One has

Lt
jk = ∂Xk

〈Φ(j)
X

〉t
˛

˛

˛

X=0
= −1

t
∂Xk

∂Yj
gt(X, Y )

˛

˛

˛

X=Y =0
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4. Linear response: Finite time

Remark. The following shows that the transport matrix is non-negative.

0 ≤ 〈σX〉t =

n
X

j=1

Xj〈Φ(j)
X

〉t =

n
X

j,k=1

Lt
jkXjXk + o(|X|2)

Proof of the theorem. One has

Lt
jk = ∂Xk

〈Φ(j)
X

〉t
˛

˛

˛

X=0
= −1

t
∂Xk

∂Yj
gt(X, Y )

˛

˛

˛

X=Y =0

As a consequence of the generalized ES symmetry one also has

−∂Xk
∂Yj

gt(X, Y )
˛

˛

˛

X=Y =0
=

1

2
∂Yk

∂Yj
gt(X, Y )

˛

˛

˛

X=Y =0

(note that the symmetry of Lt already follows from this formula!)

GDR-QD Lyon (September 2009) – p. 9



4. Linear response: Finite time

Remark. The following shows that the transport matrix is non-negative.

0 ≤ 〈σX〉t =

n
X

j=1

Xj〈Φ(j)
X

〉t =

n
X

j,k=1

Lt
jkXjXk + o(|X|2)

Proof of the theorem. One has

Lt
jk = ∂Xk

〈Φ(j)
X

〉t
˛

˛

˛

X=0
= −1

t
∂Xk

∂Yj
gt(X, Y )

˛

˛

˛

X=Y =0

As a consequence of the generalized ES symmetry one also has

−∂Xk
∂Yj

gt(X, Y )
˛

˛

˛

X=Y =0
=

1

2
∂Yk

∂Yj
gt(X, Y )

˛

˛

˛

X=Y =0

(note that the symmetry of Lt already follows from this formula!) Thus we can write

Lt
jk =

1

2t

Z t

0

Z t

0
µ0

“

Φ
(k)s1

0 Φ
(j)s2

0

”

ds1ds2 =
1

2t

Z t

0

Z t

0
µ0

“

Φ
(k)
0 Φ

(j)s2−s1

0

”

ds1ds2
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4. Linear response: Finite time

Remark. The following shows that the transport matrix is non-negative.

0 ≤ 〈σX〉t =

n
X

j=1

Xj〈Φ(j)
X

〉t =

n
X

j,k=1

Lt
jkXjXk + o(|X|2)

Proof of the theorem. One has

Lt
jk = ∂Xk

〈Φ(j)
X

〉t
˛

˛

˛

X=0
= −1

t
∂Xk

∂Yj
gt(X, Y )

˛

˛

˛

X=Y =0

As a consequence of the generalized ES symmetry one also has

−∂Xk
∂Yj

gt(X, Y )
˛

˛

˛

X=Y =0
=

1

2
∂Yk

∂Yj
gt(X, Y )

˛

˛

˛

X=Y =0

(note that the symmetry of Lt already follows from this formula!) Thus we can write

Lt
jk =

1

2t

Z t

0

Z t

0
µ0

“

Φ
(k)s1

0 Φ
(j)s2

0

”

ds1ds2 =
1

2t

Z t

0

Z t

0
µ0

“

Φ
(k)
0 Φ

(j)s2−s1

0

”

ds1ds2

and the result follows by a simple change of integration variables.
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5. Nonequilibrium Steady States

Definition. µ+ ∈ P is the NESS of (M,F , φt, µ) if

lim
t→∞

1

t

Z t

0
µs(f) ds = µ+(f)

for all bounded continuous f .
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lim
t→∞

1

t

Z t

0
µs(f) ds = µ+(f)

for all bounded continuous f . µ+ is entropically non-trivial if µ+(σ) > 0.

QuasiTheorem. The NESS µ+ of (M,F , φt, µ) is entropically non-trivial if and only if
µ+ 6∈ Pµ, i.e., µ+ is singular w.r.t. µ.

Entropic non-triviality is the signature of non-equilibrium

Theorem.(i) If ν ∈ PI ∩ Pµ then ν(σ) = 0.
(ii). If µ+(σ) − µt(σ) = O(t−1) then µ+(σ) = 0 implies µ+ ∈ PI ∩ Pµ.
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6. Linear response: The large time limit

Assume that for small X ∈ R
n the controlled system (M,F , φt

X , µX) has a NESS µX
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X , µX) has a NESS µX

〈ΦX〉+ = lim
t→∞

〈ΦX〉t = µ+
X

(ΦX) (steady currents in the NESS µ+
X

)

Ljk = ∂Xk
〈ΦX〉+

˛

˛

X=0
= ∂Xk

»

lim
t→∞

〈ΦX〉t
–˛

˛

˛

˛

X=0

(NESS transport matrix)
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t→∞
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)

Ljk = ∂Xk
〈ΦX〉+

˛

˛

X=0
= ∂Xk

»

lim
t→∞

〈ΦX〉t
–˛

˛

˛

˛

X=0

(NESS transport matrix)

If the limit and derivative can be exchanged

Ljk = lim
t→∞

Lt
jk = lim

t→∞

1

2

Z t

−t

µ0

“

Φ
(k)
0 Φ

(j)s
0

”

„

1 − |s|
t

«

ds
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lim
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˛

˛

˛

X=0

(NESS transport matrix)

If the limit and derivative can be exchanged

Ljk = lim
t→∞

Lt
jk = lim

t→∞

1

2

Z t

−t

µ0

“

Φ
(k)
0 Φ

(j)s
0

”

„

1 − |s|
t

«

ds

If the equilibrium current-current correlation function s 7→ µ0

“

Φ
(k)
0 Φ

(j)s
0

”

is integrable

one gets the Green-Kubo formula and the Onsager reciprocity relations

Ljk =
1

2

Z ∞

−∞
µ0

“

Φ
(k)
0 Φ

(j)s
0

”

ds, Ljk = Lkj
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7. The Central Limit Theorem – Fluctuation-Dissipation

The Central Limit Theorem holds for the currents if there is a positive definite matrix D

s.t., for all bounded continuous function f : R
n → R,

lim
t→∞

µ0

„

f

„

1√
t

Z t

0
Φs

0 ds

««

=
1

p

(2π)n det D

Z

Rn
f(Φ)e−

1
2
Φ·D−1Φ dΦ
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7. The Central Limit Theorem – Fluctuation-Dissipation

The Central Limit Theorem holds for the currents if there is a positive definite matrix D

s.t., for all bounded continuous function f : R
n → R,

lim
t→∞

µ0

„

f

„

1√
t

Z t

0
Φs

0 ds

««

=
1

p

(2π)n det D

Z

Rn
f(Φ)e−

1
2
Φ·D−1Φ dΦ

Einstein’s relation
Djk = 2Ljk

together with the Green-Kubo formula

Ljk =
1

2

Z ∞

−∞
µ0

“

Φ
(k)
0 Φ

(j)s
0

”

ds

and the Onsager reciprocity relations Ljk = Lkj complete the Fluctuation-Dissipation
theorem for the system (M,F , φt

X , µX) near equilibrium (X = 0).
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8. Entropic fluctuations: The limiting ES symmetry

Recall the ES function

et(α) = µ
“

e−α
R

t
0

σs ds
”
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Assume now that the limiting ES function

e(α) = lim
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t
log et(α)

exists and is differentiable for all α ∈ R.
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8. Entropic fluctuations: The limiting ES symmetry

Recall the ES function

et(α) = µ
“

e−α
R

t
0

σs ds
”

The ES fluctuation theorem says that

et(1 − α) = et(α)

Assume now that the limiting ES function

e(α) = lim
t→∞

1

t
log et(α)

exists and is differentiable for all α ∈ R.

So what ?
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8. Entropic fluctuations: The limiting ES symmetry

• e(α) is a convex function satisfying the ES symmetry e(1 − α) = e(α) and
therefore e(0) = e(1) = 0.
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• e(α) is a convex function satisfying the ES symmetry e(1 − α) = e(α) and
therefore e(0) = e(1) = 0.

• µ+(σ) = −e′(0) = e′(1). In particular, the system is entropically trivial
(µ+(σ) = 0) if and only if e(α) is identically zero on [0, 1].
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8. Entropic fluctuations: The limiting ES symmetry

• e(α) is a convex function satisfying the ES symmetry e(1 − α) = e(α) and
therefore e(0) = e(1) = 0.

• µ+(σ) = −e′(0) = e′(1). In particular, the system is entropically trivial
(µ+(σ) = 0) if and only if e(α) is identically zero on [0, 1].

• Exponential convergence in probability

µ

„

x ∈ M

˛

˛

˛

˛

˛

˛

˛

˛

1

t

Z t

0
σt(x) dt − µ+(σ)

˛

˛

˛

˛

≥ ǫ

ff«

≤ e−ta(ǫ)
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therefore e(0) = e(1) = 0.

• µ+(σ) = −e′(0) = e′(1). In particular, the system is entropically trivial
(µ+(σ) = 0) if and only if e(α) is identically zero on [0, 1].

• Exponential convergence in probability

µ

„

x ∈ M

˛

˛

˛

˛

˛

˛

˛

˛

1

t

Z t

0
σt(x) dt − µ+(σ)

˛

˛

˛

˛

≥ ǫ

ff«

≤ e−ta(ǫ)

• Strong law of large numbers

lim
t→∞

1

t

Z t

0
σs(x) ds = µ+(σ) for µ-a.e. x ∈ M

• Large deviation principle with rate function I(s) = supα∈R
(αs − e(α))

lim
t→∞

1

t
log µ

„

x ∈ M

˛

˛

˛

˛

1

t

Z t

0
σs(x) ds ∈]a, b[

ff«

= − inf
s∈]a,b[

I(s)
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8. Entropic fluctuations: The limiting ES symmetry

Similar conclusions hold for individual currents Φ
(j)
X

if one assumes that the limiting
generalized ES function

g(X, Y ) = lim
t→∞

1

t
log gt(X, Y ) = lim

t→∞

1

t
log µX

“

e−Y ·
R

t
0

Φs
X ds

”

exists and is a C1 function of Y ∈ R
n.
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9. The Gallavotti-Cohen symmetry

Let µ+ be a NESS of (M,F , φt, µ) and assume that the Gallavotti-Cohen function

e+(α) = lim
t→∞

1

t
log µ+

“

e−α
R

t
0

σs ds
”

exists and is C1.
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9. The Gallavotti-Cohen symmetry

Let µ+ be a NESS of (M,F , φt, µ) and assume that the Gallavotti-Cohen function

e+(α) = lim
t→∞

1

t
log µ+

“

e−α
R

t
0

σs ds
”

exists and is C1.

Remark. In general, unlke the ES function et(α), the finite time GC function

e+t(α) = µ+
“

e−α
R

t
0

σs ds
”

does not satisfy "the symmetry", i.e. e+t(1 − α) 6= e+t(α).
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Let µ+ be a NESS of (M,F , φt, µ) and assume that the Gallavotti-Cohen function

e+(α) = lim
t→∞

1

t
log µ+

“

e−α
R

t
0

σs ds
”

exists and is C1.

Definition. The GC symmetry holds if, for all α ∈ R, e+(1 − α) = e+(α).

• 1993: Cohen, Evans and Morriss discover the GC symmetry in numerical
experiments on shear flows.

• 1995: Cohen and Gallavotti show that the GC symmetry holds for Anosov systems.

• 1998: Kurchan shows that it also holds for stochastic dynamical systems.

• 1999: Lebowitz and Spohn make a detailed analysis of the GC symmetry for
Markov processes.

• 1999: Maes relates the GC symmetry to the Gibbs property of µ+.
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9. The Gallavotti-Cohen symmetry

Consequences of the GC symmetry:
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• Strong law of large numbers
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t
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0
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• Large deviation principle with rate function I+(s) = supα∈R
(αs − e+(α)),

lim
t→∞

1

t
log µ+

„

x ∈ M

˛

˛

˛

˛

1

t

Z t

0
σs(x) ds ∈]a, b[

ff«
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ff«

= − inf
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• The generalized GC-symmetry g+(X, X − Y ) = g+(X, Y ) yields the
fluctuation-dissipation theorem if g+(X, Y ) is C1,2.

GDR-QD Lyon (September 2009) – p. 17



10. The principle of regular entropic fluctuations

Remark. Since, for entropically non-trivial systems, µ and µ+ are mutually singular, the
ES-symmetry and the GC-symmetry are two very different statements. The ES
symmetry is a mathematical triviality (even though it has deep consequences) while the
GC-symmetry is a true mathematical finesse containing a lot of interesting information
about the NESS µ+.
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10. The principle of regular entropic fluctuations

Remark. Since, for entropically non-trivial systems, µ and µ+ are mutually singular, the
ES-symmetry and the GC-symmetry are two very different statements. The ES
symmetry is a mathematical triviality (even though it has deep consequences) while the
GC-symmetry is a true mathematical finesse containing a lot of interesting information
about the NESS µ+.
Consequently one expects the two functions e(α) and e+(α) as well as the two
generalized functions g(X, Y ) and g+(X, Y ) to be quite different.

Our main contribution to the subject (as far as classical systems are concerned) is the
following

Principle of regular entropic fluctuations. In all systems known to exhibit the GC-
symmetry, respectively the generalized GC-symmetry, one has

e+(α) = e(α), respectively g+(X, Y ) = g(X, Y ),

which is equivalent to

lim
t→∞

lim
s→∞

1

t
log µs

“

e−α
R

t
0

στ dτ
”

= lim
s→∞

lim
t→∞

1

t
log µs

“

e−α
R

t
0

στ dτ
”
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11. A list of example

• A shift. The left shift on the sequences x = (xi)i∈Z ∈ R
Z with the measure

dµ(x) =

0

@

Y

i≤0

F (−xi)dxi

1

A

 

Y

i>0

F (xi)dxi

!

Time revesal is ϑ(x)i = −x−i and dµ+(x) =
Q

i∈Z
F (xi)dxi. A simple

calculation yields

e(α) = e+(α) = log

Z „

F (−x)

F (x)

«α

F (x)dx

and one immediately checks that e(1 − α) = e(α).
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Example 12: And what about Quantum Dynamics ?

Apart from large deviation principles, which have no quantum counterparts, everythings
translate naturally to quantum setting.
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• Algebraic framework of quantum mechanics
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