SERGUEI TCHEREMCHANTSEV UNIVERSITY OF ORLEANS, FRANCE

DYNAMICAL BOUNDS FOR THE FIBONACCI HAMILTONIANS

We study the long-time behavior of the solution to the time-dependent Schrödinger equation, $i \partial_{t} \psi=H \psi$ in the Hilbert space $l^{2}(\mathbf{Z})$ with an initial state $\psi=\delta_{0}$, namely, $\psi(t)=$ $\exp (-i t H) \delta_{0}$. The Schrödinger operator is of the form

$$
[H u](n)=u(n+1)+u(n-1)+V(n) u(n),
$$

where

$$
V(n)=\lambda \chi_{\left[1-\varphi^{-1}, 1\right)}\left(n \varphi^{-1}+\theta \bmod 1\right),
$$

$\lambda>0$ is the coupling constant, φ is the golden mean

$$
\varphi=\frac{\sqrt{5}+1}{2}
$$

and $\theta \in[0,1)$ is the phase.

One studies the quantities

$$
\begin{aligned}
& P_{r}(N, t)=\sum_{n \geq N}\left|<e^{-i t H} \delta_{0}, \delta_{n}>\right|^{2}, \\
& P_{l}(N, t)=\sum_{n \leq-N}\left|<e^{-i t H} \delta_{0}, \delta_{n}>\right|^{2}
\end{aligned}
$$

where $N \geq 1$, called right and left probabilities, and

$$
P(N, t)=P_{l}(N, t)+P_{r}(N, t),
$$

called outside probabilities. One studies also the time-averaged probabilities (especially when proving dynamical lower bounds).

To control the tails of the wavepacket, for any $0 \leq \alpha<+\infty$ define

$$
S^{-}(\alpha)=-\liminf _{t \rightarrow+\infty} \frac{\log P\left(t^{\alpha}-1, t\right)}{\log t}
$$

$$
S^{+}(\alpha)=-\limsup _{t \rightarrow+\infty} \frac{\log P\left(t^{\alpha}-1, t\right)}{\log t}
$$

One has $0 \leq S^{+}(\alpha) \leq S^{-}(\alpha) \leq+\infty$. One can define similar growth exponents for the time-averaged probabilities. Interpretation: if $S^{-}(\alpha)=L<+\infty$, then for any $\delta>0, P\left(t^{\alpha}, t\right) \geq$ $C(\delta) t^{-L-\delta}$. If $S^{+}(\alpha)<+\infty$, similar bound holds for some sequence of times.

The following critical exponents are of interest:

$$
\alpha_{l}^{ \pm}=\sup \left\{\alpha \geq 0: S^{ \pm}(\alpha)=0\right\}
$$

$$
\alpha_{u}^{ \pm}=\sup \left\{\alpha \geq 0: S^{ \pm}(\alpha)<+\infty\right\}
$$

Interpretation: rates of propagation of the essential part of the wavepacket and of the fastest (polynomially small) part of the wavepacket. If $\alpha<\alpha_{l}^{-}$, then for any $\delta>0, P\left(t^{\alpha}, t\right) \geq C(\delta) t^{-\delta}$. If $\alpha>\alpha_{u}^{+}$, then $P\left(t^{\alpha}, t\right)$ goes to 0 faster than any inverse power of t. Similar exponents can be defined for the time-averaged probabilities.

The exponents α_{l}, α_{u} are closely related with the growth exponents of the moments of the position operator. Namely, let

$$
X^{p}(t)=\sum_{n} n^{p}\left|<e^{-i t H} \delta_{0}, \delta_{n}>\right|^{2}
$$

and

$$
\begin{aligned}
& \beta^{-}(p)=\liminf _{t \rightarrow+\infty} \frac{\log |X|^{p}(t)}{\log t} \\
& \beta^{+}(p)=\limsup _{t \rightarrow+\infty} \frac{\log |X|^{p}(t)}{\log t}
\end{aligned}
$$

Then

$$
\alpha_{l}^{ \pm}=\lim _{p \rightarrow 0} \beta^{ \pm}(p), \alpha_{u}^{ \pm}=\lim _{p \rightarrow+\infty} \beta^{ \pm}(p)
$$

Similarly for the time-averaged quantities.

The aim is to obtain tight bounds for $\alpha_{l}^{ \pm}, \alpha_{u}^{ \pm}$. In the present talk: $\alpha_{u}^{ \pm}$. Main technical tool is the integration in the complex plane. Let $R(z)=(H-z I)^{-1}$. Assume that H is bounded and $\sigma(H) \subset[-K+1, K-1]$ for some $K>1$. Then

$$
\begin{aligned}
& <e^{-i t H} \delta_{0}, \delta_{n}> \\
& \quad=-(2 \pi i)^{-1} \int_{\Gamma} \exp (-t z)<R(z) \delta_{0}, \delta_{n}>
\end{aligned}
$$

where Γ is any positively oriented simple closed contour in \mathbf{C} such that $\sigma(H)$ lies inside Γ. It follows that

$$
\begin{aligned}
& P_{r}(N, t) \leq \quad C(\exp (-c N)+ \\
& \left.\quad \int_{-K}^{K} \sum_{n \geq N}\left|<R\left(E+i t^{-1}\right) \delta_{0}, \delta_{n}>\right|^{2} d E\right)
\end{aligned}
$$

and similarly for $P_{l}(N, t)$. These formula allow to bound from above the probabilities (without time-averaging).

For the time-averaged probabilities

$$
\begin{aligned}
& \widetilde{P}_{r}(N, T) \\
& \quad=2 / T \int_{0}^{+\infty} \exp (-2 t / T)\left|<e^{-i t H} \delta_{0}, \delta_{n}>\right|^{2} d t
\end{aligned}
$$

the well-known Parseval equality holds:

$$
\begin{aligned}
& \widetilde{P}_{r}(N, T) \\
& =(\pi T)^{-1} \int_{\mathbf{R}} \sum_{n \geq N}\left|<R\left(E+i T^{-1}\right) \delta_{0}, \delta_{n}>\right|^{2} d E,
\end{aligned}
$$

and similarly for $\widetilde{P}_{l}(N, T)$. These equalities allow to bound from above and from below the time-averaged probabilities.

In the case of discrete one-dimensional operators, one can control the resolvent using the transfer matrices $\Phi(n, z)$. The definition is such that $u: \mathbf{Z} \rightarrow \mathbf{C}$ solves

$$
u(n+1)+u(n-1)+V(n) u(n)=z u(n)
$$

if and only if

$$
(u(n+1), u(n))^{T}=\Phi(n, z)(u(1), u(0))^{T}
$$

for any n.

One can prove the following:

$$
\begin{aligned}
& P_{r}(N, t) \leq C(\exp (-c N)+ \\
& \left.t^{4} \int_{-K}^{K}\left(\max _{0 \leq n \leq N-1}\left\|\Phi\left(n, E+i t^{-1}\right)\right\|^{2}\right)^{-1} d E\right)
\end{aligned}
$$

and similarly for $P_{l}(N, t)$. For the time-averaged outside probabilities, the following lower bounds hold:

$$
\begin{aligned}
& \widetilde{P}_{r}(N, T) \leq C(\exp (-c N)+ \\
& \left.T^{3} \int_{-K}^{K}\left(\max _{0 \leq n \leq N-1}\left\|\Phi\left(n, E+i T^{-1}\right)\right\|^{2}\right)^{-1} d E\right)
\end{aligned}
$$

and similarly for $\widetilde{P}_{l}(N, T)$. On the other hand,

$$
\begin{aligned}
\widetilde{P}(N, T)= & \widetilde{P}_{r}(N, T)+\widetilde{P}_{l}(N, T) \\
& \geq C T^{-1} \int_{\mathbf{R}}\left\|\Phi\left(N, E+i T^{-1}\right)\right\|^{-2}
\end{aligned}
$$

Thus, the problem is to control the norm of the transfer matrices $\|\Phi(N, z)\|$ for large N and complex z close to $\sigma(H)$ (which give the main contribution to the integrals over E). The inequalities (1) and (2) serve to prove that $P\left(t^{\alpha}, t\right)$ or $\widetilde{P}\left(T^{\alpha}, T\right)$ goes fast to 0 if α is large enough. The inequality (3) allows to prove that $\widetilde{P}\left(T^{\alpha}, T\right)$ is not too small if α is small enough. Thus, one can prove upper bounds for $\alpha_{u}^{ \pm}, \widetilde{\alpha}_{u}^{ \pm}$and lower bounds for $\widetilde{\alpha}_{u}^{ \pm}$.

For Fibonacci hamiltonian, the key analytical tool are the traces of the transfer matrices:

$$
x_{k}(z)=\frac{1}{2} \operatorname{Tr} \Phi_{\theta=0}\left(F_{k}, z\right),
$$

where F_{k} are the Fibonacci numbers. Since $\left|x_{k}(z)\right| \leq\left\|\Phi_{\theta=0}\left(F_{k}, z\right)\right\|$, lower bounds on the traces imply lower bounds on the norms of the transfer matrices. On the other hand, if $\left|x_{k}(z)\right| \leq 1+\delta, \delta \in(0,1)$ for some large k, then the norms $\|\Phi(N, z)\|$ remain bounded polynomially in N for $N \leq F_{k}$ for any θ.

Consider the sets

$$
\sigma_{k}^{\delta}=\left\{z \in \mathbf{C}:\left|x_{k}(z)\right| \leq 1+\delta\right\} .
$$

The set σ_{k}^{δ} has exactly F_{k} connected components, each of them being a topological disk symmetric about the real axis.

If z is outside of the two consecutive sets σ_{k}^{δ}, σ_{k+1}^{δ}, then the traces $x_{k+m}(z)$ grow very fast with m. This allows to prove that $P\left(F_{k+\sqrt{k}}, t\right)$ (resp. $\tilde{P}\left(F_{k+\sqrt{k}}, T\right)$) are very small provided t^{-1} (resp. T^{-1}) is larger than the size of ALL connected components of $\sigma_{k}^{\delta}, \sigma_{k+1}^{\delta}$. In this manner one proves upper bounds for $\alpha_{u}^{ \pm}, \widetilde{\alpha}_{u}^{ \pm}$.

On the other hand, if T^{-1} is small enough with respect to SOME component of σ_{k}^{δ} (one takes the largest one), then there is some interval I such for $E \in I$ the norms $\left\|\Phi\left(N, E+i T^{-1}\right)\right\|$ remain polynomially bounded in N for $N \leq F_{k}$. This interval gives at least polynomially small contribution to the integral in 3. In this manner one proves lower bound for $\widetilde{\alpha}_{u}^{ \pm}$.

The crucial moment is the size of the LARGEST connected component of the set σ_{k}^{δ} for large k. Define the two functions of the coupling parameter λ :

$$
\begin{gathered}
S_{l}(\lambda)=\frac{1}{2}\left((\lambda-4)+\sqrt{(\lambda-4)^{2}-12}\right), \\
S_{u}(\lambda)=2 \lambda+22 .
\end{gathered}
$$

One can show that the size of the largest connected component of σ_{k}^{δ} lies between $r=C_{1} S_{u}(\lambda)^{-k / 2}$ and $R=C_{2} S_{l}(\lambda)^{-k / 2}$ (in the sense that it contains a disk of radius r and is inside a disk of radius R).

This gives the following result for the upper dynamical exponents:

Theorem 1 Let $\lambda \geq 8$. The bounds hold:

$$
\alpha_{u}^{ \pm} \leq \frac{2 \log \phi}{\log S_{l}(\lambda)}
$$

$$
\frac{2 \log \phi}{\log S_{u}(\lambda)} \leq \widetilde{\alpha}_{u}^{ \pm} \leq \frac{2 \log \phi}{\log S_{l}(\lambda)}
$$

In particular,

$$
\lim _{\lambda \rightarrow \infty} \widetilde{\alpha}_{u}^{ \pm} \cdot \log \lambda=2 \log \phi
$$

It is interesting to compare with the previous lower bound for $\widetilde{\alpha}_{u}^{ \pm}$obtained in [Damanik, Embree, Gorodetski, T.]:

$$
\tilde{\alpha}_{u}^{ \pm} \geq \operatorname{dim}_{B}^{ \pm}\left(\sigma\left(H_{\lambda}\right)\right)
$$

It was proven in [DEGT] that

$$
\lim _{\lambda \rightarrow \infty} \operatorname{dim}_{B}^{ \pm}\left(\sigma\left(H_{\lambda}\right)\right) \cdot \log \lambda=b \log \phi,
$$

where $b=1.83 \ldots$. Comparing this result with the statement of the Theorem, one sees that

$$
\widetilde{\alpha}_{u}^{ \pm}>\operatorname{dim}_{B}^{ \pm}\left(\sigma\left(H_{\lambda}\right)\right)
$$

for large values of λ. This is the first example where such strict inequality holds.

