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We study the long-time behavior of the solu-
tion to the time-dependent Schrodinger equa-
tion, i) = Ht in the Hilbert space [2(Z)
with an initial state ¢ = dg, namely, ¥(t) =
exp(—itH)dg. The Schrodinger operator is of
the form

[Hu]l](n) =u(n+1)4+u(n—-1) + V(n)u(ln),

where

V(in) = )\X[l_@_l’l)(ngp_l + 6 mod 1),

A > 0 is the coupling constant, ¢ is the golden
mean
V541
2
and 6 € [0,1) is the phase.

SO:



One studies the quantities

Pr(N,t) = Z | < e_itH50757”c > |27
n>N

PN, )= Y | <e ™55,8, > |2,
n<—N

where N > 1, called right and left probabilities,
and

P(N,t) = P(N,t) + P-(N,1),

called outside probabilities. One studies also
the time-averaged probabilities (especially when
proving dynamical lower bounds).



To control the tails of the wavepacket, for any
0 < a< +oo define

log P(t®* — 1,t
S=(a) = — liminf 129 4
t——+o00 log t
log P(t“ — 1.t
ST (a) = —limsup g P( ’ ).
t——+o0 log ¢

One has 0 < ST(a) < S (a) < 4+o00. One
can define similar growth exponents for the
time-averaged probabilities. Interpretation: if
ST (o) = L < 400, then forany § > 0, P(t%,t) >
c()t—L=9. If St(a) < +4oo, similar bound
holds for some sequence of times.



T he following critical exponents are of interest:

ozli = sup{a >0 : SE(a) = 0},

ot =sup{a>0 : St (a) < +oo}.

Interpretation: rates of propagation of the es-
sential part of the wavepacket and of the fastest
(polynomially small) part of the wavepacket. If
a < a;, then for any § >0, P(t%,t) > C(5)t~°.
If @ > o), then P(t*,t) goes to 0 faster than
any inverse power of t. Similar exponents can
be defined for the time-averaged probabilities.



The exponents «j, «ay are closely related with
the growth exponents of the moments of the
position operator. Namely, let

XP(t) =) nP|< e sy 5, > |2,

n

and
_ . log| X |P(t)
= liminf :
B () t——+o0 logt
log| X |P(¢
6+(p) = limsup glIX|F( ).
t——+o00 logt
Then
)" = lim B¥(p), ay = lim_B¥(p).
p—0 p——+00

Similarly for the time-averaged quantities.



The aim is to obtain tight bounds for a;t, ot

In the present talk: oi. Main technical tool
IS the integration in the complex plane. Let
R(z) = (H—zI)"1. Assume that H is bounded
and o(H) C [-K + 1,K — 1] for some K > 1.
Then

< e MHs, 85, >
— _(2mi)"] /rexp(—tz) < R(2)d0, 6n, >,
where [ is any positively oriented simple closed

contour in C such that o(H) lies inside . It
follows that

P-(N,t) < C(exp(—cN) +
K
/ S | < R(E + it~ 180, 0n > |2dE)
_KnZN
and similarly for P,(N,t). These formula allow

to bound from above the probabilities (without
time-averaging).



For the time-averaged probabilities

—+ o0 .
— 2/T/O exp(—2t/T)| < e~ tHsq, 8, > [2dt,
the well-known Parseval equality holds:

ﬁT(Na T)
— (WT)—lf S | < R(E + T Y60, 6 > |2dE,
R SN

and similarly for P;(N,T). These equalities al-
low to bound from above and from below the
time-averaged probabilities.



In the case of discrete one-dimensional opera-
tors, one can control the resolvent using the
transfer matrices ®(n,z). The definition is
such that v : Z — C solves

un+1)4+uln—-—1)4+ V(in)u(n) = zu(n)
if and only if

(u(n 4 1), u(n))" = ®(n, 2)(u(1),u(0))"

for any n.



One can prove the following:

Pr(N,t) < C(exp(—cN) + (1)
4 K o—1N 12 !
¢ /_K (qur%aji[(_lHCD(n,E-l—zt )| ) iE),

and similarly for P,(N,t). For the time-averaged
outside probabilities, the following lower bounds
hold:

Pr(N,T) < C(exp(—cN) + (2)
K —1
3 ——NT
T /_K (Og%ajif(_l |D(n, E 4T~ )| > dE),

and similarly for P,(N,T). On the other hand,

P(N,T) = P(N,T)+ B(N,T) (3)
> CT_1/R||CD(N,E—|—iT_1)||_2.
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Thus, the problem is to control the norm of
the transfer matrices ||®(NV, z)|| for large N and
complex z close to o(H) (which give the main
contribution to the integrals over E). The
inequalities (1) and (2) serve to prove that
P(t%,t) or P(T®,T) goes fast to 0 if « is large
enough. The inequality (3) allows to prove
that P(T%,T) is not too small if a is small
enough. Thus, one can prove upper bounds
for aif, &t and lower bounds for ai.
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For Fibonacci hamiltonian, the key analytical
tool are the traces of the transfer matrices:
r(2) = %Trq’e:o(Fk, z),

where Fj. are the Fibonacci numbers. Since
2 (2)| < ||Pyg=0(Fk, 2z)||, lower bounds on the
traces imply lower bounds on the norms of
the transfer matrices. On the other hand, if
lx(2)| < 149,60 € (0,1) for some large k, then
the norms ||®P (N, z)|| remain bounded polyno-
mially in N for N < F. for any 6.
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Consider the sets

ng{zé C : |zp(2)| <146}

The set ¢f has exactly Fy connected compo-
nents, each of them being a topological disk
symmetric about the real axis.
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If z is outside of the two consecutive sets a,‘z,
Ug—|-1' then the traces xp4,,(z) grow very fast

with m. This allows to prove that P(Fk+\f’ t)

(resp. P(Fk+f, T)) are very small provided

t—1 (resp. T—1) is larger than the size of ALL
connected components of ¢f, o), ;. In this

manner one proves upper bounds for af, ai.
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On the other hand, if T~ is small enough with
respect to SOME component of ag (one takes
the largest one), then there is some interval
I such for E € I the norms ||®(N, E + T 1)
remain polynomially bounded in N for N < F}..
This interval gives at least polynomially small
contribution to the integral in 3. In this man-
ner one proves lower bound for &,ﬁf.
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The crucial moment is the size of the LARGEST
connected component of the set a,‘z for large
k. Define the two functions of the coupling
parameter \:

S0 = 5(O =)+ - 42 - 12)

Su(N) = 2X + 22.

One can show that the size of the largest con-
nected component of ag lies between
r = C1Su(\)"%/2 and R = C55;(\)~%/2 (in the
sense that it contains a disk of radius r and is
inside a disk of radius R).
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This gives the following result for the upper
dynamical exponents:

Theorem 1 Let A > 8. The bounds hold:

210
oijf < do |
log S;(\)

21
2log ¢ S&ffé oggb.
log Su(X) l0g S;(A)
In particular,

im &t - log A = 2log ¢.

A— 00
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It is interesting to compare with the previous
lower bound for & obtained in [Damanik, Em-
bree, Gorodetski, T.]:

ag > dimz(o(H)))
It was proven in [DEGT] that
Jim dim%(a(Hy)) - log A = blog ¢,
— 00

where b = 1.83.... Comparing this result with
the statement of the Theorem, one sees that

&t > dimZ(o(H)y))

for large values of A. This is the first example
where such strict inequality holds.
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