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We study the long-time behavior of the solu-

tion to the time-dependent Schrödinger equa-

tion, i∂t = H in the Hilbert space l2(Z)

with an initial state  = �0, namely,  (t) =

exp(−itH)�0. The Schrödinger operator is of

the form

[Hu](n) = u(n+ 1) + u(n− 1) + V (n)u(n),

where

V (n) = ��[1−'−1,1)(n'−1 + � mod 1),

� > 0 is the coupling constant, ' is the golden

mean

' =

√
5 + 1

2

and � ∈ [0,1) is the phase.
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One studies the quantities

Pr(N, t) =
∑
n≥N

∣ < e−itH�0, �n > ∣2,

Pl(N, t) =
∑

n≤−N
∣ < e−itH�0, �n > ∣2,

where N ≥ 1, called right and left probabilities,

and

P (N, t) = Pl(N, t) + Pr(N, t),

called outside probabilities. One studies also

the time-averaged probabilities (especially when

proving dynamical lower bounds).
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To control the tails of the wavepacket, for any

0 ≤ � < +∞ define

S−(�) = − lim inf
t→+∞

logP (t� − 1, t)

log t
,

S+(�) = − lim sup
t→+∞

logP (t� − 1, t)

log t
.

One has 0 ≤ S+(�) ≤ S−(�) ≤ +∞. One

can define similar growth exponents for the

time-averaged probabilities. Interpretation: if

S−(�) = L < +∞, then for any � > 0, P (t�, t) ≥
C(�)t−L−�. If S+(�) < +∞, similar bound

holds for some sequence of times.

4



The following critical exponents are of interest:

�±l = sup{� ≥ 0 : S±(�) = 0},

�±u = sup{� ≥ 0 : S±(�) < +∞}.

Interpretation: rates of propagation of the es-

sential part of the wavepacket and of the fastest

(polynomially small) part of the wavepacket. If

� < �−l , then for any � > 0, P (t�, t) ≥ C(�)t−�.

If � > �+
u , then P (t�, t) goes to 0 faster than

any inverse power of t. Similar exponents can

be defined for the time-averaged probabilities.
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The exponents �l, �u are closely related with

the growth exponents of the moments of the

position operator. Namely, let

Xp(t) =
∑
n
np∣ < e−itH�0, �n > ∣2,

and

�−(p) = lim inf
t→+∞

log∣X∣p(t)
logt

,

�+(p) = lim sup
t→+∞

log∣X∣p(t)
logt

.

Then

�±l = lim
p→0

�±(p), �±u = lim
p→+∞

�±(p).

Similarly for the time-averaged quantities.
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The aim is to obtain tight bounds for �±l , �
±
u .

In the present talk: �±u . Main technical tool

is the integration in the complex plane. Let

R(z) = (H−zI)−1. Assume that H is bounded

and �(H) ⊂ [−K + 1,K − 1] for some K > 1.

Then

< e−itH�0, �n >

= −(2�i)−1
∫

Γ
exp(−tz) < R(z)�0, �n >,

where Γ is any positively oriented simple closed

contour in C such that �(H) lies inside Γ. It

follows that

Pr(N, t) ≤ C( exp(−cN) +∫ K
−K

∑
n≥N

∣ < R(E + it−1)�0, �n > ∣2dE)

and similarly for Pl(N, t). These formula allow

to bound from above the probabilities (without

time-averaging).
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For the time-averaged probabilities

P̃r(N,T )

= 2/T
∫ +∞

0
exp(−2t/T )∣ < e−itH�0, �n > ∣2dt,

the well-known Parseval equality holds:

P̃r(N,T )

= (�T )−1
∫
R

∑
n≥N

∣ < R(E + iT−1)�0, �n > ∣2dE,

and similarly for P̃l(N,T ). These equalities al-

low to bound from above and from below the

time-averaged probabilities.
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In the case of discrete one-dimensional opera-

tors, one can control the resolvent using the

transfer matrices Φ(n, z). The definition is

such that u : Z→ C solves

u(n+ 1) + u(n− 1) + V (n)u(n) = zu(n)

if and only if

(u(n+ 1), u(n))T = Φ(n, z)(u(1), u(0))T

for any n.
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One can prove the following:

Pr(N, t) ≤ C( exp(−cN) + (1)

t4
∫ K
−K

(
max

0≤n≤N−1
∣∣Φ(n,E + it−1)∣∣2

)−1

dE),

and similarly for Pl(N, t). For the time-averaged

outside probabilities, the following lower bounds

hold:

P̃r(N,T ) ≤ C( exp(−cN) + (2)

T3
∫ K
−K

(
max

0≤n≤N−1
∣∣Φ(n,E + iT−1)∣∣2

)−1

dE),

and similarly for P̃l(N,T ). On the other hand,

P̃ (N,T ) = P̃r(N,T ) + P̃l(N,T ) (3)

≥ CT−1
∫
R
∣∣Φ(N,E + iT−1)∣∣−2.
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Thus, the problem is to control the norm of

the transfer matrices ∣∣Φ(N, z)∣∣ for large N and

complex z close to �(H) (which give the main

contribution to the integrals over E). The

inequalities (1) and (2) serve to prove that

P (t�, t) or P̃ (T�, T ) goes fast to 0 if � is large

enough. The inequality (3) allows to prove

that P̃ (T�, T ) is not too small if � is small

enough. Thus, one can prove upper bounds

for �±u , �̃
±
u and lower bounds for �̃±u .
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For Fibonacci hamiltonian, the key analytical

tool are the traces of the transfer matrices:

xk(z) =
1

2
TrΦ�=0(Fk, z),

where Fk are the Fibonacci numbers. Since

∣xk(z)∣ ≤ ∣∣Φ�=0(Fk, z)∣∣, lower bounds on the

traces imply lower bounds on the norms of

the transfer matrices. On the other hand, if

∣xk(z)∣ ≤ 1 + �, � ∈ (0,1) for some large k, then

the norms ∣∣Φ(N, z)∣∣ remain bounded polyno-

mially in N for N ≤ Fk for any �.
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Consider the sets

��k = {z ∈ C : ∣xk(z)∣ ≤ 1 + �}.

The set ��k has exactly Fk connected compo-

nents, each of them being a topological disk

symmetric about the real axis.
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If z is outside of the two consecutive sets ��k,

��k+1, then the traces xk+m(z) grow very fast

with m. This allows to prove that P (F
k+
√
k
, t)

(resp. P̃ (F
k+
√
k
, T )) are very small provided

t−1 (resp. T−1) is larger than the size of ALL

connected components of ��k, ��k+1. In this

manner one proves upper bounds for �±u , �̃
±
u .
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On the other hand, if T−1 is small enough with

respect to SOME component of ��k (one takes

the largest one), then there is some interval

I such for E ∈ I the norms ∣∣Φ(N,E + iT−1)∣∣
remain polynomially bounded in N for N ≤ Fk.

This interval gives at least polynomially small

contribution to the integral in 3. In this man-

ner one proves lower bound for �̃±u .
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The crucial moment is the size of the LARGEST

connected component of the set ��k for large

k. Define the two functions of the coupling

parameter �:

Sl(�) =
1

2
((�− 4) +

√
(�− 4)2 − 12),

Su(�) = 2�+ 22.

One can show that the size of the largest con-

nected component of ��k lies between

r = C1Su(�)−k/2 and R = C2Sl(�)−k/2 (in the

sense that it contains a disk of radius r and is

inside a disk of radius R).
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This gives the following result for the upper

dynamical exponents:

Theorem 1 Let � ≥ 8. The bounds hold:

�±u ≤
2 log�

logSl(�)
,

2 log�

logSu(�)
≤ �̃±u ≤

2 log�

logSl(�)
.

In particular,

lim
�→∞

�̃±u ⋅ log� = 2 log�.
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It is interesting to compare with the previous

lower bound for �̃±u obtained in [Damanik, Em-

bree, Gorodetski, T.]:

�̃±u ≥ dim±B(�(H�))

It was proven in [DEGT] that

lim
�→∞

dim±B(�(H�)) ⋅ log� = b log�,

where b = 1.83.... Comparing this result with

the statement of the Theorem, one sees that

�̃±u > dim±B(�(H�))

for large values of �. This is the first example

where such strict inequality holds.

18


