A step towards a semi-classical analysis

on the Heisenberg group

Journées Semi-classiques, LYON, 7 Sept. 2009

Clotilde Fermanian - Kammerer
joint work with Hajer Bahouri and Isabelle Gallagher

OUTLINE OF THE TALK

1. The Heisenberg Group.
2. A Class of Symbols on the Heisenberg Group.
3. An Algebra of Pseudodifferential Operators, action in \mathcal{S}.
4. Action on Sobolev Spaces.

I. The Heisenberg Group

1. Definition

The Heisenberg Group \mathbf{H}^{d} is defined as $\mathbf{R}^{2 d+1}$ with the group law

$$
\begin{gathered}
(x, y, s) \cdot\left(x^{\prime}, y^{\prime}, s^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, s+s^{\prime}-2\left(x \mid y^{\prime}\right)+2\left(y \mid x^{\prime}\right)\right) \\
(x, y, s),\left(x^{\prime}, y^{\prime}, s^{\prime}\right) \in \mathbf{R}^{d} \times \mathbf{R}^{d} \times \mathbf{R}=\mathbf{R}^{d+1}
\end{gathered}
$$

where $(x \mid y)$ denotes the Euclidin scalar product in \mathbf{R}^{d}.
It is the simplest non commutative Lie group and as such has been widely studied (Complex Analysis, Harmonic Analysis, PDE's, Quantum Mechanic).
$\mathrm{d}=1: \mathbf{H}^{d}=\mathbf{H}$ and

$$
(x, y, s) \cdot\left(x^{\prime}, y^{\prime}, s^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, s+s^{\prime}-2\left(x y^{\prime}-y x^{\prime}\right)\right)
$$

- Lie Algebra of left-invariant vetor fields

A tangent vector field X to \mathbf{H} is said to be left-invariant if

$$
\forall h \in \mathbf{H}, \quad \tau_{h}(X f)=X\left(\tau_{h}(f)\right)
$$

where τ_{h} is the left-translation defined by

$$
\forall w \in \mathbf{H}, \quad \tau_{h}(f)(w)=f(h \cdot w)
$$

The vector space of left-invariant vector fields is generated by

$$
X=\partial_{x}+2 y \partial_{s}, \quad Y=\partial_{y}-2 x \partial_{s}, \quad S=\partial_{s}=\frac{1}{4}[Y, X]
$$

- The Laplace-Kohn Operator

$$
\Delta_{\mathbf{H}^{d}}=X^{2}+Y^{2}
$$

- The Haar measure

$$
\mathrm{dw}=\mathrm{d} x \mathrm{~d} y \mathrm{~d} s \text { (Lebesgue measure). }
$$

- $L^{2}(\mathbf{H})$ space

$$
f \in L^{2}(\mathbf{H}, \mathbf{C}) \Longleftrightarrow \int_{\mathbf{H}}|f(w)|^{2} d w<+\infty .
$$

- Sobolev spaces with exponent $k \in \mathbf{N}$

$$
f \in H^{k}(\mathbf{H}, \mathbf{C}) \Longleftrightarrow T_{1} \circ \cdots \circ T_{k} f \in L^{2}(\mathbf{H}, \mathbf{C})
$$

for any choice of T_{1}, \cdots, T_{k} among X and Y.

- The complex setting

$$
w \in \mathbf{H}, \quad w=(x, y, s)=(z, s), \quad z=x+i y \in \mathbf{C}
$$

- The product law

$$
(z, s) \cdot\left(z^{\prime}, s^{\prime}\right)=\left(z+z^{\prime}, s+s^{\prime}+2 \operatorname{Im}\left(z \overline{z^{\prime}}\right)\right) .
$$

- The left-invariant vectors fields Lie algebra is generated by
$Z=\partial_{z}+i \bar{z} \partial_{s}, \quad Z=\partial_{\bar{z}}-i z \partial_{s} \quad$ with $\quad S=\partial_{s}=\frac{1}{2 i}[Z, Z]$.
- The Laplace-Kohn Operator writes

$$
\Delta_{\mathbf{H}}=2(Z \bar{Z}+\bar{Z} Z)
$$

2. The Fourier transform

The Fourier transform on \mathbf{H} is defined via the representations of \mathbf{H}. All irreducible representations are unitarily equivalent to one of the two representations :

- the Bargman representation
- the Schrödinger representation
- The Schrödinger representation

The family of unitary operators $\left(v_{w}^{\lambda}\right), \lambda \in \mathbf{R}^{*}, w=(x, y, s) \in \mathbf{H}$ defined for $f \in L^{2}(\mathbf{R})$ by

$$
v_{w}^{\lambda} f(\xi)=\mathrm{e}^{i \lambda(s-2 x \cdot y+2 y \cdot \xi)} f(\xi-2 x), \quad \forall \xi \in \mathbf{R}
$$

gives a representation of \mathbf{H} on $L^{2}(\mathbf{R})$.

$$
v_{w}^{\lambda} \circ v_{w^{\prime}}^{\lambda}=v_{w \cdot w^{\prime}}^{\lambda}, \quad\left(v_{w}^{\lambda}\right)^{-1}=v_{w}^{\lambda}{ }^{-1}=\left(v_{w}^{\lambda}\right)^{*} .
$$

- The Fourier transform

$$
\mathcal{F}(f)(\lambda)=\int_{\mathbf{H}} v_{w}^{\lambda} f(w) d w .
$$

maps $L^{1}(\mathbf{H})$ on operators uniformly bounded with respect to λ maps $L^{2}(\mathbf{H})$ on families of $H S_{\lambda}$, the space of families of HilbertSchmidt operators such that

$$
\int_{\mathbf{R}}\|\mathcal{F}(f)(\lambda)\|_{H S}^{2} d \lambda<\infty
$$

- Inversion formula

$$
f(w)=\pi^{-2} \int_{\mathbf{R}} \operatorname{tr}\left(v_{w^{-1}}^{\lambda} \mathcal{F}(f)(\lambda)\right)|\lambda| d \lambda,
$$

- Fourier-Plancherel formula

$$
\|f\|_{L^{2}\left(\mathbf{H}^{d}\right)}^{2}=\pi^{-2} \int_{\mathbf{R}}\|\mathcal{F}(f)(\lambda)\|_{H S\left(\mathcal{H}_{\lambda}\right)}^{2}|\lambda| d \lambda .
$$

- Fourier transform and left-invariant vector fields

$$
\mathcal{F}(Z f)(\lambda)=\mathcal{F}(f)(\lambda) \circ Q_{\lambda}, \quad \mathcal{F}(Z f)(\lambda)=\mathcal{F}(f)(\lambda) \circ \bar{Q}_{\lambda}
$$

where

$$
\begin{array}{rlll}
T_{\lambda} Q_{\lambda} T_{\lambda}^{*}=\sqrt{|\lambda|}\left(\partial_{\xi}-\xi\right) & \text { and } & T_{\lambda} \bar{Q}_{\lambda} T_{\lambda}^{*}=\sqrt{|\lambda|}\left(\partial_{\xi}+\xi\right) & \text { if } \lambda>0 \\
T_{\lambda} Q_{\lambda} T_{\lambda}^{*}=\sqrt{|\lambda|}\left(\partial_{\xi}+\xi\right) & \text { and } & T_{\lambda} \bar{Q}_{\lambda} T_{\lambda}^{*}=\sqrt{|\lambda|}\left(\partial_{\xi}-\xi\right) & \text { if } \lambda<0
\end{array}
$$

and T_{λ} is the unitary operator defined by

$$
T_{\lambda} f(\xi)=|\lambda|^{-1 / 4} f\left(|\lambda|^{-1 / 2} \xi\right), \quad \xi \in \mathbf{R}^{d}, \quad f \in L^{2}(\mathbf{R}) .
$$

In particular

$$
\mathcal{F}\left(-\Delta_{\mathbf{H}} f\right)(\lambda)=\mathcal{F}(f)(\lambda) \circ D_{\lambda} \text { with } D_{\lambda}=4|\lambda| T_{\lambda}^{*}\left(-\Delta_{\xi}+\xi^{2}\right) T_{\lambda} .
$$

The derivation corresponds to composition on the right-hand side of the Fourier transform
3. Sobolev spaces with real-valued exponents

One defines Sobolev spaces with real-valued exponents

$$
H^{s}\left(\mathbf{H}^{d}\right)=\left\{f \in L^{2}(\mathbf{H}), \quad \mathcal{F}(f)(\lambda) \circ D_{\lambda}^{\frac{s}{2}} \in H S_{\lambda}\right\}, \quad s \in \mathbf{R} .
$$

Similarly, one can define via the Fourier transform Besov spaces.
4. Littlewood-Paley theory

Once given a dyadic partition of the unity

$$
1=\psi(\xi)+\sum_{p \geq 1} \phi\left(2^{-2 p} \xi\right)
$$

one decomposes a function $f \in L^{2}(\mathbf{H})$ as $f=\Sigma_{p \geq-1} \Delta_{p} f$ with

$$
\mathcal{F}\left(\Delta_{-1} f\right)=\mathcal{F}(f) \circ \psi\left(D_{\lambda}\right), \quad \mathcal{F}\left(\Delta_{p} f\right)=\mathcal{F}(f) \circ \phi\left(2^{-2 p} D_{\lambda}\right) .
$$

(Bahouri, Chemin, Gallagher, Gérard, Lemarié, Xu)

II. A Class of Symbols on the Heisenberg Group

1- The idea...
Clasical case : The operator of symbol a is defined via the inverse Fourier formula by

$$
\operatorname{Op}(a) f(x)=(2 \pi)^{-1} \int_{\mathbf{R}^{d}} \mathrm{e}^{i x \cdot \xi} \widehat{f}(\xi) a(x, \xi) d \xi, \quad x \in \mathbf{R} .
$$

Heisenberg case : One wants to define an operator A by

$$
A f(w)=\pi^{-2} \int_{\mathbf{R}} \operatorname{tr}\left(v_{w^{-1}}^{\lambda} \mathcal{F}(f)(\lambda) A_{\lambda}(w)\right)|\lambda| d \lambda, \quad w \in \mathbf{H}
$$

Question: How to chose the family of operators $A_{\lambda}(w)$ to get an algebra of operators which contains the differential operators and the elements of which act continously on Sobolev spaces?

2- Analysis of two examples

- The operator Z

$$
Z f(w)=\pi^{-2} \int_{\mathbf{R}} \operatorname{tr}\left(v_{w^{-1}}^{\lambda} \mathcal{F}(f)(\lambda) Q_{\lambda}\right)|\lambda| d \lambda
$$

with

$$
\begin{aligned}
& Q_{\lambda}=T_{\lambda} \sqrt{|\lambda|}\left(\partial_{\xi}-\xi\right) T_{\lambda}^{*} \text { if } \lambda>0 \\
& Q_{\lambda}=T_{\lambda} \sqrt{|\lambda|}\left(\partial_{\xi}+\xi\right) T_{\lambda}^{*} \text { if } \lambda<0
\end{aligned}
$$

\Longrightarrow Chose

$$
A_{\lambda}(w)=T_{\lambda} \mathrm{op}^{w}(a(w, \operatorname{sgn}(\lambda) \sqrt{|\lambda|} \xi, \sqrt{|\lambda|} \eta)) T_{\lambda}^{*}
$$

where $(\xi, \eta) \mapsto a(w, \xi, \eta)$ belongs to a class of symbols associated with the Harmonic oscillator (with Weyl-Hörmander quantification).
Then, the symbol of Z is $a(w, \xi, \eta)=i \eta-\xi$.

- The operator S

We have $\mathcal{F}(S f)(\lambda)=i \lambda \mathcal{F}(f)(\lambda)$ whence

$$
S f(w)=\pi^{-2} /_{\mathbf{R}} \operatorname{tr}\left(v_{w^{-1}}^{\lambda} \mathcal{F}(f)(\lambda)\right) i \lambda|\lambda| d \lambda
$$

\Longrightarrow The symbols have to depend also on λ
Then, the symbol of S is $i \lambda$.

3- The class of symbols
Let $\mu \in \mathbf{R}$. We say that $a \in S_{\mathbf{H}}(\mu)$ if and only if
$-a \in \mathcal{C}^{\infty}\left(\mathbf{H} \times \mathbf{R}^{3}\right)$

- for all $k, n \in \mathbf{N}, \rho \in \mathbf{N}$, there exists a constant $C_{n, k}>0$ such that

$$
\begin{aligned}
& \left\|\partial_{\lambda}^{k} \partial_{(\xi, \eta)}^{\beta} a(\cdot, \lambda, \xi, \eta)\right\|_{C \rho(\mathbf{H})} \leq C_{n, k}\left(1+|\lambda|+\xi^{2}+\eta^{2}\right)^{\frac{\mu-|\beta|}{2}}(1+|\lambda|)^{-k} \\
& \quad \text { for }|\beta| \leq n \text { and }(w, \lambda, \xi, \eta) \in \mathbf{H} \times \mathbf{R}^{3} .
\end{aligned}
$$

Examples: $i \eta-\xi \in S_{\mathbf{H}}(1)$ and $i \lambda \in S_{\mathbf{H}}(2)$.

III. The Algebra of Pseudodifferential Operators

1. Definition

With $a \in S_{\mathbf{H}}(\mu)$ one associates the operator

$$
A_{\lambda}(w)=T_{\lambda} \operatorname{op}^{w}\left(a(w, \lambda, \operatorname{sgn}(\lambda) \sqrt{|\lambda|} \xi, \sqrt{|\lambda|} \eta) T_{\lambda}^{*} .\right.
$$

Then, one defines the operator $\operatorname{Op}(a)$ by

$$
\mathrm{Op}(a) f(w)=\pi^{-2} /_{\mathbf{R}} \operatorname{tr}\left(v_{w^{-1}}^{\lambda} \mathcal{F}(f)(\lambda) A_{\lambda}(w)\right)|\lambda| d \lambda .
$$

Theorem: If $a \in S_{\mathbf{H}}(\mu)$, then $\operatorname{Op}(a)$ maps continuously $\mathcal{S}(\mathbf{H})$ into itself. Moreover, $\operatorname{Op}(a)^{*}$ and $\operatorname{Op}(a) \circ \operatorname{Op}(b)$ are pseudodifferential operators of order μ and $\mu+\nu$ respectively if $a \in S_{\mathbf{H}}(\mu)$ and $b \in S_{\mathbf{H}}(\nu)$.
2. Idea of the proof of the continuity on the Schwartz class

Prove $f \in \mathcal{S}(\mathbf{H}) \Longrightarrow \mathrm{Op}(a) f \in L^{\infty}(\mathbf{H})$ i.e. find C_{0} such that

$$
\begin{equation*}
I:=\left|\int_{\mathbf{R}} \operatorname{tr}\left(v_{w^{-1}}^{\lambda} \mathcal{F}(f)(\lambda) A_{\lambda}(w)\right)\right| \lambda|d \lambda|<C_{0} . \tag{1}
\end{equation*}
$$

We have by Cauchy-Schwartz

$$
\begin{aligned}
I \leq & \left(\ell_{\mathbf{R}}\left\|v_{w^{-1}}^{\lambda} \mathcal{F}(f)(\lambda)\left(\operatorname{Id}+D_{\lambda}\right)^{k}\right\|_{H S}^{2}|\lambda| d \lambda\right)^{\frac{1}{2}} \\
& \times\left(\ell_{\mathbf{R}}\left\|\left(\operatorname{Id}+D_{\lambda}\right)^{-k} A_{\lambda}(w)\right\|_{H S}^{2}|\lambda| d \lambda\right)^{\frac{1}{2}} .
\end{aligned}
$$

We consider successively each term.

- First term:

$$
f \in \mathcal{S}\left(\mathbf{H}^{d}\right) \Longrightarrow
$$

$$
\begin{aligned}
\left\|v_{w^{-1}}^{\lambda} \mathcal{F}(f)(\lambda)\left(\operatorname{Id}+D_{\lambda}\right)^{k}\right\|_{H S} & \leq\left\|\mathcal{F}(f)(\lambda)\left(\operatorname{Id}+D_{\lambda}\right)^{k}\right\|_{H S} \\
& \leq C\left\|\mathcal{F}\left(\left(\operatorname{Id}-\Delta_{\mathbf{H}}\right)^{k} f\right)(\lambda)\right\|_{H S}
\end{aligned}
$$

and by the Plancherel formula

$$
\int_{\mathbf{R}}\left\|\mathcal{F}(f)(\lambda)\left(\operatorname{Id}+D_{\lambda}\right)^{k}\right\|_{H S}^{2}|\lambda| d \lambda \leq C_{1}\left\|\left(\operatorname{Id}-\Delta_{\mathbf{H}}\right)^{k} f\right\|_{L^{2}(\mathbf{H})}^{2} .
$$

- Second term: A standard estimate gives

$$
\begin{aligned}
\left\|\left(\operatorname{Id}+D_{\lambda}\right)^{-k} A_{\lambda}(w)\right\|_{H S} & \leq\left\|\left(\operatorname{Id}+D_{\lambda}\right)^{-\frac{\mu}{2}} A_{\lambda}(w)\right\|_{\mathcal{L}\left(L^{2}(\mathbf{R})\right)}\left\|\left(\operatorname{Id}+D_{\lambda}\right)^{\frac{\mu}{2}-k}\right\|_{H S} \\
& \leq C\left\|\left(\operatorname{Id}+D_{\lambda}\right)^{\frac{\mu}{2}-k}\right\|_{H S}
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\mathbf{R}}\left\|\left(\operatorname{Id}+D_{\lambda}\right)^{\frac{\mu}{2}-k}\right\|_{H S}^{2}|\lambda| d \lambda & =\sum_{m \in \mathbf{N}} \int_{\mathbf{R}}(1+|\lambda|(2 m+1))^{\frac{\mu}{2}-k}|\lambda| d \lambda \\
& \leq C\left(\sum_{m \in \mathbf{N}} \frac{1}{1+m^{2}}\right) /_{\mathbf{R}}(1+|\beta|)^{\frac{\mu}{2}-k+1} d \beta
\end{aligned}
$$

with the change of variables $\beta=\lambda(2 m+1)$.
Choose k large enough

$$
\int_{\mathbf{R}}\left\|\left(\operatorname{Id}+D_{\lambda}\right)^{\frac{\mu}{2}-k} A_{\lambda}(w)\right\|_{H S}^{2}|\lambda| d \lambda \leq C_{2}
$$

- Conclusion of the proof:

$$
I \leq \sqrt{C_{1} C_{2}}\left\|\left(\operatorname{Id}-\Delta_{\mathbf{H}}\right)^{k} f\right\|_{L^{2}(\mathbf{H})} .
$$

- Dealing with derivatives and multiplication by w : One uses

$$
\begin{gathered}
{[Z, \operatorname{Op}(a)]=\operatorname{Op}\left(b_{1}\right), \quad[Z, \operatorname{Op}(a)]=\operatorname{Op}\left(b_{2}\right),} \\
{[z, \operatorname{Op}(a)]=\operatorname{Op}\left(c_{1}\right),[z, \operatorname{Op}(a)]=\operatorname{Op}\left(c_{2}\right),} \\
{[i s, \operatorname{Op}(a)]=-\operatorname{Op}\left(\partial_{\lambda} a\right),}
\end{gathered}
$$

with

$$
\begin{aligned}
b_{1}=Z a+\lambda\left(\partial_{\eta} a+i \partial_{\xi} a\right), \quad b_{2} & =\bar{Z} a+\lambda\left(\partial_{\eta} a-i \partial_{\xi} a\right) \in S_{\mathbf{H}}(\mu+1), \\
c_{1}=\frac{1}{2}\left(\frac{1}{i} \partial_{\eta} a-\partial_{\xi} a\right), c_{2} & =\frac{1}{2}\left(\frac{1}{i} \partial_{\eta} a+\partial_{\xi} a\right) \in S_{\mathbf{H}}(\mu-1), \\
\partial_{\lambda} a & \in S_{\mathbf{H}}(\mu) .
\end{aligned}
$$

IV. The Action on Sobolev Spaces

Theorem : There exists a constant C such that if a is a symbol of order μ, then

$$
\|\operatorname{Op}(a)\|_{\mathcal{L}\left(H^{s}(\mathbf{H}), H^{s-\mu}(\mathbf{H})\right)} \leq C\|a\|_{n, S_{\mathbf{H}}(\mu)} .
$$

Schedule of the proof:

- Reduction to the case of a fixed regularity index $0<s<1$ by use of the Laplace-Kohn operator.
- Case of special symbols called reduced (treated by LittlewoodPaley theory).
- Approximation of any symbol by reduced symbols (via Fourier series).
(Proof inspired by the proof of Coifman-Meyer in the classical case)

1- The method: the classical case

- Classical case: Consider a dyadic partition of the unity

$$
1=\psi(\xi)+\sum_{p \in \mathbf{N}} \phi\left(2^{-p} \xi\right)
$$

$$
\text { Then } a(x, \xi)=a(x, \xi) \psi(\xi)+\sum_{p \in \mathbf{N}} a(x, \xi) \phi\left(2^{-p} \xi\right)
$$

Use Fourier series to write

$$
\begin{array}{cc}
b_{-1}(x, \xi):=a(x, \xi) \psi(\xi)=\sum_{k \in \mathbf{N}} b_{k}^{-1}(x) \mathrm{e}^{i k \cdot \xi} \tilde{\psi}(\xi), \quad \psi \tilde{\psi}=1 \\
b_{p}(x, \xi):=a\left(x, 2^{p} \xi\right) \phi(\xi)=\sum_{k \in \mathbf{N}} b_{k}^{p}(x) \mathrm{e}^{i k \cdot \xi} \tilde{\phi}(\xi), \quad \phi \tilde{\phi}=1
\end{array}
$$

Then $a(x, \xi)=\Sigma_{k} t_{k}(x, \xi)$,

$$
t_{k}=b_{k}^{-1}(x) \tilde{\psi}(\xi) \mathrm{e}^{i k \xi}+\sum_{p \in \mathbf{N}} b_{k}^{p}(x) \mathrm{e}^{i 2^{-p} k \xi} \tilde{\phi}\left(2^{-p} \xi\right)
$$

The boundedness of $\mathrm{Op}\left(t_{k}\right)$ comes from standard theory and the convergence of the t_{k} series is due to symbol estimates.

- Adaptation to Heisenberg case
- Dyadic unity partition in (y, η)
- Expansion in Fourier series
- Main difficulties
- Reduced symbols are more difficult to treat:

$$
o p^{w}\left(\varphi\left(2^{-2 p}|\lambda|\left(\xi^{2}+\eta^{2}\right)\right) \neq \varphi\left(2^{-2 p}|\lambda|\left(\xi^{2}-\partial_{\xi}^{2}\right)\right)\right.
$$

One uses Mehler's formula to see how different these two operators really are.

- The symbols depend on λ and one need another microlocalisation in λ.

2- Decomposition of the symbol
Dyadic partition of the unity

$$
\begin{aligned}
a(w, \lambda, \xi, \eta) & =a(w, \lambda, y, \eta) \psi\left(\xi^{2}+\eta^{2}\right)+\sum_{p \geq 0} a(w, \lambda, \xi, \eta) \phi\left(2^{-2 p}\left(\xi^{2}+\eta^{2}\right)\right) \\
& =b_{-1}(w, \lambda, \xi, \eta)+\sum_{p \geq 0} b_{p}\left(w, \lambda, 2^{-p} \xi, 2^{-p} \eta\right)
\end{aligned}
$$

with

$$
\psi\left(\xi^{2}+\eta^{2}\right)+\sum_{p \geq 0} \phi\left(2^{-2 p}\left(\xi^{2}+\eta^{2}\right)\right)=1 .
$$

Fourier series expansion

$$
b_{p}(w, \lambda, \xi, \eta)=\sum_{k \in \mathbf{Z}^{2}} \mathrm{e}^{i k \cdot(\xi, \eta)} b_{p}^{k}(w, \lambda) \widetilde{\phi}\left(\xi^{2}+\eta^{2}\right)
$$

Dyadic decomposition in λ

$$
b_{p}^{k}(w, \lambda)=\sum b_{p,-1}^{k, j}(w) \mathrm{e}^{i j \lambda} \tilde{\psi}(\lambda)+\sum_{r \in \mathbf{N}, j \in \mathbf{Z}} b_{p, r}^{k, j}(w) \mathrm{e}^{i j 2^{-2 r} \lambda} \tilde{\phi}\left(2^{-2 r} \lambda\right)
$$

At the end:

$$
\begin{gathered}
a(w, \lambda, \xi, \eta)=\sum_{k, j} t_{k, j}(w, \lambda, \xi, \eta) \\
t_{k, j}(w, \lambda, \xi, \eta)=\sum_{p} b_{p,-1}^{k, j}(w) \psi^{j}(\lambda) \Phi_{p}^{k}(\xi, \eta)+\sum_{p, r} b_{p, r}^{k, j}(w) \phi^{j}\left(2^{-2 r} \lambda\right) \Phi_{p}^{k}(\xi, \eta), \\
\text { with } \psi^{j}(\lambda)=\mathrm{e}^{i j \lambda} \psi(\lambda), \quad \phi^{j}(\lambda)=\mathrm{e}^{i j \lambda} \phi(\lambda), \\
\Phi_{-1}^{k}(\xi, \eta)=\mathrm{e}^{i k \cdot(\xi, \eta)} \psi\left(\xi^{2}+\eta^{2}\right), \quad \Phi_{p}^{k}(\xi, \eta)=\mathrm{e}^{i k \cdot(\xi, \eta)} \phi\left(2^{-2 p}\left(\xi^{2}+\eta^{2}\right)\right), \quad p \in \mathbf{N} .
\end{gathered}
$$

3- Analysis of reduced symbols

- Convergence of the $t_{k, j}$ series

It comes from symbolic estimates as in the classical case.

- Action of $\mathrm{Op}\left(t_{k, j}\right)$ on Sobolev spaces

It comes from the use of Mehler's formula and Littlewood-Paley theory on the Heisenberg group.

CONCLUSION

- Applications
- Wave front
- Microlocal defect measures
- Phase-space and semi-classical analysis
- Extensions
- Stratified Lie groups
- Related works
- Stein, Taylor and the Weyl correspondence.
- Greinier et all. (80's): Laguerre calculus on the Heigroup.
- Ruzhansky (2007): symbolic calculus on compact Lie groups.
- Van Erp (2008): symbolic calculus on the Heisenberg group related to contact manifolds.

