Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules

DATA CAROUSEL @CC-IN2P3

by Aresh Vedaee (12.12.19)

Outline

ATLAS Data Carousel R&D Tests & results Discussion points Next steps

ATLAS perspective on the data storage challenge of HL-LHC:

- Opportunistic storage' basically doesn't exist
- Format size reduction and data compression are both long-term goals, require significant efforts from the software and distributed computing teams
- Tape storage is 3~5 times cheaper than disk storage, increasing tape usage is a natural way to cut into the gap of storage shortage for HL-LHC

Exploit more tape usage

- To study the feasibility to run various ATLAS workloads from tape
 - Facing the data storage challenge of HL-LHC, ATLAS started this R&D project this June 2018
- By 'data carousel' we mean an orchestration between workflow management (WFMS), data management (DDM/Rucio) and tape services whereby a bulk production campaign with its inputs resident on tape, is executed by staging and promptly processing a sliding window of X% (5%?, 10%?) of inputs onto buffer disk, such that only ~ X% of inputs are pinned on disk at any one time.

3

DATA CAROUSEL R&D : WHO?

- Rucio
 - Improve tape usage, e.g.bulk requests to tape, with size tailored to site parameters
- FTS
 - Optimize scheduling of transfers between tape and other storage endpoints, e.g. dedicated FTS instance for tape recall requests
- SE endpoints (dCache, StoRM, Castor, etc)
 - Any bottlenecks and possible improvements on interfacing with respective tape backend ?
- Evolving tape scheduler
 - Support high priority, low latency request ?
- PS2
 - Study and optimize prompt processing of data as it appears off of tape --- process immediately when X% of a dataset is staged ?

- First phase
 - Understand tape system performance at all T1 sites
 - Identify workloads (start with derivation), and evaluate performance based on current systems
 - Tape available at ~ 10 sites, while processing happens everywhere
 - Performance with tape vs disk

- Address issues found in phase 1
- Deeper integration between workload and data management systems (PanDA/PS2/Rucio)
- Third phase (for Run3)
 - Integrate with production system and run production, at scale, for selected workflows

5

- Run the test:
 - Rucio → FTS → Site: staging files from tape to local disk (DATATAPE/MCTAPE to DATADISK)
 - Data sample
 - About 100TB~200TB AOD datasets, average file size 2~3GB
 - Bulk mode
 - Sites can request throttle on incoming staging requests (3 sites)
 - With concurrent activities (production tape writing/reading and other VOs)
- Status : all done at 10 T1s
 - BNL, FZK, PIC, INFN, TRIUMF, CCIN2P3, NL-T1 and RAL, NRC and NDGF

DATA CAROUSEL TESTS - PHASE 1 : RESULTS (ATLAS VIEW)

Site	Tape Drives used	Average Tape (re)mounts	Average Tape throughput	Stable Rucio throughput	Test Average throughput
[1]BNL	31 LTO6/7 drives	2.6 times	1~2.5GB/s	866MB/s	545MB/s (47TB/day)
FZK	8 T10KC/D drives	>20 times	~400MB/s	<u>300MB/s</u>	286MB/s (25TB/day)
INFN	2 T10KD drives	Majority tapes mounted once	277MB/s	<u>300MB/s</u>	255MB/s (22TB/day)
PIC	5~6 T10KD drives	Some outliers (>40 times)	500MB/s	[2] <u>380MB/s</u>	400MB/s (35TB/day)
[1]TRIUMF	11 LTO7 drives	Very low (near 0) remounts	1.1GB/s	<u>1GB/s</u>	700MB/s (60TB/day)
CCIN2P3	[3]36 T10KD drives	~5.33 times	2.2GB/s	<u>3GB/s</u>	2.1GB/s (180TB/day)
SARA- NIKHEF	10 T10KD drives	2.6~4.8 times	500~700MB/s	640MB/s	630MB/s (54TB/day)
[4]RAL	10 T10KD drives	n/a	1.6GB/s	2GB/s	1.6GB/s (138TB/day)
[5]NDGF	10 IBM Jaguar/LTO- 5/6 drives, from 4 sites	~3 times	200~800MB/s	500MB/s	300MB/s (26TB/day)

@CC-IN2P3:

Meilleurs résultats des T1 !

Mais :

NATIONAL LABORATORY

- 36 drives utilisés
- Taux remontage : 5,33 x / bande

[1] dedicated to ATLAS

[2] with 5 drives, later increased to 6 drives

[3] 36 is the max number of drives, shared with other VOs who were not using them during the test

[4] 8 drives dedicated to this test. Will have 22 shared with other VOs in production.

[5] federated T1, 4 physical sites have tapes

ENERGY

- Results is better than expected
 - ~600TB/day total throughput from all T1s, under "as is" condition
 - Can we repeat it in real production environment?

 Estimate on data volume required by current ATLAS derivation campaign

260TB/day input AOD data, if run on 100k cores

8

DATA CAROUSEL TESTS - PHASE 2 : CONDITIONS

- The P2R2 test refers to the last 2018 RAW reprocessing campaign.
 - Timeline : started on the 8th August 2019
 - Data volume varies by site
 - No warning
 - Job released by ATLAS PS2 after 90% of staged input data
 - Monitoring tool
 - https://bigpanda.cern.ch/datacardash/

Source	Progress plot	DDM Dash	Datasets Active	Done (+ 90% readiness)	Files Remaining	Files Done
BNL-OSG2_DATATAPE	\sim	>	3	0 (+0)	171	3
CERN-PROD_RAW	×	>	3	0 (+3)	0	22886
FZK-LCG2_DATATAPE	\sim	>	1	0 (+0)	1	0

Show 10 🔹 entries Search:										
Campaign 🔺	Request ID	TaskID 🔅	Status 🛊	Total Files	Staged Files	Progress (%)	Source RSE	Time Elapsed 🍦	Started At	Rucio Rule
Archive	27866	19899431	staging	22299	22287	100		6 days, 18:11:08.719864	2019-11- 28T13:56:03.295620	c5cf5e27841b4e3090bf42ff4e6a05eb
data15_13TeV	. 23576	18352838 🔀	done		1		BNL- OSG2_DATATAPE	1 day, 21:26:47.140179	2019-12- 03T10:40:24.875153	- 19ff7762384443f081fa98ebb9a92ccc -

Datasets

DATA CAROUSEL TESTS - PHASE 2 : RESULTS (ATLAS VIEW)

sites	tape	SE	Tape drives (max. reading)	P1 avg throughput	P1 stable throughput	P2R2 avg throughput (100% staged)	P2R2 avg throughput (90% staged)	Capacity pledge (2019)
CERN	СТА	EOS	(expect 60GB/s for Run3)	2GB/s	2GB/s	<u>763MB/s</u>	<u>1.2GB/s</u>	100%
BNL	HPSS	dCache	22 LTO7 17 LTO6	545MB/s	866MB/s	<u>900MB/s</u>	<u>1.4GB/s</u>	23%
FZK	$TSM\toHPSS$	dCache	30 T10KD	286MB/s	300MB/s	<u>316MB/s</u>	<u>324MB/s</u>	13%
RAL	СТА	Echo	21 T10KD	1.6GB/s	2GB/s	<u>850MB/s</u>	<u>1.3GB/s</u>	13%
CCIN2P3	HPSS	dCache	56 T10KD	2.1GB/s	3GB/s	<u>401MB/s</u>	<u>524MB/s</u>	12%
TRIUMF	Tapeguy	dCache	20 LTO8 12 LTO7	700MB/s	1GB/s	<u>366MB/s</u>	<u>330MB/s</u>	10%
INFN	TSM	StoRM	16 T10KD 19 TS1600	255MB/s	300MB/s	N/A	N/A	8%
NL-T1	DMF	dCache	8 T10KC, 2 T10KD, 10 LTO8	630MB/s	640MB/s	<u>626MB/s</u>	<u>630MB/s</u>	8%
NDGF	тѕм	dCache	N/A	300MB/s	500MB/s	<u>214MB/s</u>	<u>371MB/s</u>	6%
PIC	Enstore	dCache	4~6 T10KD	400MB/s	380MB/s	<u>179MB/s</u>	<u>170MB/s</u>	4%

@CC-IN2P3 : 311K files, 0.6PB data in 21 days \rightarrow AVG THROUGHPUT << 1GB/s << P1R2 (2.1GB/s)

DATA CAROUSEL TESTS - PHASE 2 : RESULTS (CC-IN2P3 VIEW)

ATLAS ACTIVITY ON HPSS

860K files, 1.7PB data in 21 days (~1GB/s) :

Status ≑	Count ≑	File size ≑	Avg File size 🌲
STAGED	769,821	1.642PB	2.237GB
ALREADYONDISK	87,764	79.816TB	953.618MB
FAILED	2,938	4.027TB	1.403GB
	860,523	1.724PB	4.572GB

Export: Raw 📥 Formatted 📥

TREQS2 : Requetes par utilisateurs

TREQS2: Stage rate by users

TREQS2: Tape count by users

DATA CAROUSEL @CC-IN2P3

- FTS issues @CERN:
 - FTS Scheduler degraded
 - FTS was not able to schedule transfers between the tape buffer to the disk on time → files got garbage collected → transfer requests failed → FTS optimizer throttled to the minimum parallel transfer requests
 - Fail nearline
 - Redundant transfer requests' failures \rightarrow FTS optimizer throttling
 - FTS Daemons' crashes
 - Failing to recover "already started" requests \rightarrow untracked staged files

The main consequence of this problem was the CC-IN2P3 poor staging stats !

• More details :

 https://indico.cern.ch/event/843988/contributions/3543611/attachments/1904532/314 6356/FTS_Data_Carousel_PostMortem.pdf

- During P2R2 the performance of CC-IN2P3 storage system was lower than P1R2.
- But it wasn't a site issue nor a performance issue :
 - As later understood, it was mainly due to several FTS issues
 @CERN
 - Besides, the number of requests per recall pool during P2R2
 @CC-IN2P3 was even increased wrt P1R2
 - And site performance varies wrt the whole of concurrent activities within and outside a given VO, sharing same storage resources → how reppresentative can be this and past tests for storage systems' performance assessments ?
- Future improvements :
 - Revise dCache config for ATLAS : redundant intermediate poolto-pool copies (but that depends on how ATLAS' actual tape usage) ? Increase # max requests per recall pools ?
 - Move to IBM Entreprise class tape cartridges&drives (Jaguar)

- ATLAS SW&Computing Week
 - 4 sessions dedicated to Data Carousel: Sites, FTS&Rucio, Storage (dCache, CTA), Discussions
 - Addressing two main gaps :
 - Gap 1 : between the throughput out of the tape system itself and the throughput delivered to users (rucio in this case)
 - This is to tackle the issues along the staging chain, dCache, FTS, Rucio, PS2, etc, to minimize performance penalties to the original tape throughput
 - Gap 2 : between the nominal tape throughput and the current throughput out of tape
 - This is about "smart writing", by bigger files and/or better organizing files among tapes, to reach higher tape reading efficiency

• What are the expected tape throughput (both write and read) for my site ?

- Another aspect of expectation is the switch to "data carousel" model from a traditional archival model, which isn't what some sites had in mind when they initially designed their tape infrastructure
 - We're all different
 - Different technologies
 - Different hardware
 - Different software
 - Different setups
 - So we're on our own basically wrt tuning

- Improvements on hardware
 - Bigger disk buffer on the frontend
 - More disk pool servers
- Improvements on software
 - dCache request grouping mechanisms ?
 - Other HSM interface: ENDIT (dCache plugin to solve scalability issue of default dCache HSM interface)
- Write in the way you want to read later
 - File family is good feature provided by tape system
 - There are more...group by datasets ? If grouping by dataset is too small is container a solution?
 - Discussion between dCache/Rucio: Rucio provide dataset info in the transfer request ?
- File size
 - ADC working on increasing file size for tape writing (target at 10GB)

- Bulk request limit
 - Need knob to control bulk request limit : 3 sites requested a cap on the incoming staging requests from upstream (Rucio/FTS)
 - Consideration factors ---limit from tape system itself, size of disk buffer, load the SRM/pool servers can handle, etc
 - Three places to control the limit
 - Rucio can set limit per (activity&destination endpoint) pair
 - Adding another knob on limiting the total staging requests, from all activities
 - FTS can set limit on max requests
 - Each instance sets its own limit, need to orchestrate multiple instances
 - dCache sites can control incoming requests by setting limits on:
 - Total staging requests, in progress requests and default staging lifetime

 New test with reprocessing campaign on the 6th January 2020 (after FTS upgrade ?)

- Accounting @CC-IN2P3 ?
 - Mounts per tape
 - Number of drives used per VO and R/W activity
 - Concurrent activities within and outiside a VO
 - Stats by dataset (dataset distribution on tape) and file request (# of times a given file was staged)
 - For recall pool configuration and buffer dimensioning

USEFUL LINKS

- https://indico.cern.ch/event/756338/attachments/172384 5/2784624/update-atlas-data-carousel-wlcg-wg.pdf
- https://indico.cern.ch/event/651359/contributions/320853 6/attachments/1752789/2840658/atlas-data-carousel-GD B-nov2018.pdf
- https://indico.cern.ch/event/865577/contributions/364682 7/attachments/1951569/3240027/CC_IN2P3_DATA_CA ROUSEL_2019.pdf
- https://indico.cern.ch/event/823341/

BACKUP

20

STORAGE SYSTEM : TAPE (2/3)

- HPSS hpss-7.5.1.2-20190116.u9
- 85 % of HPSS access are performed through storage middleware
 - dCache (LCG/egee),
 - Xrootd and iRods
- Still some direct access to HPSS but decreasing

- HPSS Interface :
 - RFIO with HPSS extensions
 - Read operations from storage middleware are handled by TREQS 2

- Tape Libraries
 - 4 Oracle SL8500 Libraries
 - Interconnected (with PTP)
 - Collocated with TSM (backup)
- 116 Tapes drives
 - 22 T10K-C (EOL) ATLAS &
 - 20 LTO 4 (TSM)
 17 LTO 7 (TSM)
 other LHC VOs
 - 56 T10K-D (HPSS)
 - 1 LTO8 (test)

- ACSLS 8.5 on RHEL 7
- 20 000 Tapes
 - 13000 T10000T2 (8,5 TB)
 - 5 000 LTO 4
 - 2 000 LTO 6
- Daily tape mounts:
 - 2 000 average
 - > 6 000 peak (300/h)

ING63

- Store operation
 - 8 import pool, 1 connection, ~8TB per pool
 - 3 space tokens (mctape, datatape, archive)
 - 4 storage class (based on file size)
- Files written in the same time are spread over multiple tapes
 - IE: 6 tapes for XL files.
- Filename based on pnfsid:

/hpss5/dcache/atlas/datatape/2018/10/000055C8CF15B9764B858C974D31928071D3

Restore operation

- dCache submit requests over 12 pools (~10TB per pool)
- Each pool can handle 800 requests max (250 for P1R2, 400 for P2R2)
- Treqs schedule requests and stage files
 - 36 drives configured (shared by all experiments and r/w activities !)
- HPSS handle only 1 stage requests a time per drive

dCache Pool Diagram

DATA CAROUSEL TESTS - PHASE 2 : RESULTS (ATLAS VIEW)

Source site	NB files (Share)	Nb days for 90%	staging	NB days for 100% staging		@CC-IN2	@CC-IN2P3 :			
BNL-OSG2_DATATAPE	606333 (19.58%	6) 10.10		18.29		$311K$ files, 0.6PB data in 21 days \rightarrow AVG THROUGHPU				
CERN-PROD_RAW 325140 (10.50%)		6.17	6.17		11.93		<< 1GB/s << P1R2 (2.2GB/s			
FZK-LCG2_DATATAPE	APE 345232 (11.15%)			>33						
IN2P3-CC_DATATAPE 311457 (10.06%)		6) 16.36	16.36							
NDGF-T1_DATATAPE	212794 (6.97%)	13.25	13.25		26.47					
PIC_DATATAPE 176536 (5.70%)		21.85	21.85		25.12					
RAL-LCG2_DATATAPE	ATAPE 455127 (14.70%)		8.44		14.27					
SARA-MATRIX_DATATAPE	345130 (11.15%	6) 12.54		14.50		edric				
TRIUMF-LCG2_DATATAPE	260537 (8.42%)	16.33		18.27						
	1	Таре	Total size	Avg. size per dataset	Avg. files per dataset	Avg. dataset staging time (days)	Avg. task executing time(days)			
		BNL-OSG2_DATATAPE	1.2 PB	26 TB	12000	15	22	-		
		FZK-LCG2_DATATAPE	0.8 PB	31 TB	14000	33	34]		
		IN2P3-CC_DATATAPE	0.6 PB	29 TB	13000	15	27			
	RA	NDGF-T1_DATATAPE	0.5 PB	30 TB	13000	21	24			
	E	PIC_DATATAPE	0.4 PB	34 TB	15000	22	27			
	Fro	RAL-LCG2_DATATAPE	1 PB	32 TB	14000	11	16			
		SARA-MATRIX_DATATAPE	0.7 PB	31 TB	14000	13	30(?)			
		TRIUMF-LCG2_DATATAPE	0.6 PB	32 TB	15000	18	25			
DATA CAROUSEL @CC-IN	N2P3						CCIN2P3	2		

ATLAS TOPOLOGY & NETWORK (1/2)

Network transfers Cache Site CPU **Disk-less Site** CPU Cache Nucleus CPU Storage Other Sites

ATLAS TOPOLOGY & NETWORK (2/2)

Network Requirements

Nucleus	Now	5 year (2022)	10 year (2027)
Storage Capacity (PB)	2	5	12.5
Total CPU (kHS06)	40	100	250
LAN (Gb/s)	40	200	1000
WAN (Gb/s)	20	60	200

Disk-less	Now	5 year (2022)	10 year (2027)
Total CPU (kHS06)	20	50	125
WAN (Gb/s)	4	20	100

- Storage and CPU numbers are example values, scale appropriately for different sites.
- Storage and CPU increasing by 20% year (flat cash assumption).
 - We expect network usage to grow slightly faster.
- We expect Nucleus storage to be dual stack by 2019 (End of Run 2).
- In 5 years we recommend 100Gb/s WAN connectivity for Tier 2s.

