
VO data access and 
visualization developments

Matthieu Baumann, 4th February 2020, Strasbourg



VO data access: responding to community needs
- the CDS library ecosystem, getting ready for science platforms

● MOCPy:
○ Parses, manipulates and serializes MOC regions (group of HEALPix cells of different depths 

describing arbitrary regions)

● Astroquery.cds:
○ Sub-package of astroquery giving access to metadata of the datasets stored by the CDS:

■ HiPS, VizieR tables, Simbad database
○ E.g.: Query for surveys having observations in a complex region (i.e. a MOC).

● ipyaladin:
○ Widget allowing to run Aladin Lite in a Jupyter notebook.

● More to come: a new astroquery package to 
query hips2fits through Python (mainly 
giving a HiPS name and an astropy.WCS).

https://alasky.u-strasbg.fr/hips-image-services/hips2fits
generated with HiPS2fits (T. Boch)

https://alasky.u-strasbg.fr/hips-image-services/hips2fits


HiPS visualizer using WebGL & modern technologies
● WebGL2:

○ fully supported by firefox, chrome, Android OS web browsers
○ Compatible with iOS and Safari (experimental features currently but is working!)

● Rust:
○ Modern programming system language similar to C++ (compiled)
○ Performant, fast, new and appreciated by the developer community (most loved programming 

language on stackoverflow)
○ Good libraries ecosystem, wrapper around WebGL, etc..

● WebAssembly:
○ Bytecode compiled from C++/Rust and called from javascript code. It’s a W3C standard



WebGL HiPS visualizer: Support of multiple projections

● Aladin-Lite uses canvas 
rendering:

○ Vertices of the HEALPix tiles 
being in the field of view are 
projected to the screen

○ This works for orthographic 
projection but for 2D projections 
like Hammer-Aitoff this 
introduces artifacts at the 
bounds!

○ One vertex of the tile is 
projected on the other side of 
the screen! The tile is 
stretched and it’s not good



WebGL HiPS visualizer: Support of multiple projections
WebGL offers a way to “work” pixel by pixel and not tile by tile!:

1. A set of (xp, yp) points in the projected space and their respective (ra, dec) in 
the world are computed one time at the beginning and given to the GPU

2. For each pixel, the GPU knows in which
triangle the pixel is and can perform an
interpolation between the 3 vertices
of the triangle to know the (ra, dec) and
(xp, yp) of the pixel.

v1

v2 v3



WebGL HiPS visualizer: Support of multiple projections

1. For each pixel we have its (ra, dec), we can get the HEALPix cell in which it is 
located and its (xt, yt) position on the tile!
a. This uses the HEALPix ang2pix function which has been implemented in GLSL to run on GPU 

(F.-X. Pineau)

2. A buffer of 128 tile textures ordered by HPX idx is given to the GPU each 
frame. We retrieve the texture corresponding to the HPX idx returned by 
ang2pix! (binary search on a 128 sized array).

1. Color of P
2. GPU 
interpolation 
between v1, v2 , 
v3 → (θ, δ) 

v1

v2 v3
Px

3. ang2pix(θ, δ) → (idx, u, v)

idx ordered

4. binary 
search through 
a buffer of 128 
tile textures 
using idx

v

u

P



WebGL HiPS visualizer: Plotting tables of ~100k sources
● WebGL allows to use the GPU to do “instancing”, i.e. plotting a large number 

of sources, up to several 100k in real time. 
● Tables can be rendered as heat-maps.

P

1. Sources in the field of 
view are retrieved

2. A gaussian kernel is 
plotted over each of these 
sources. This gives a 
black/transparent image.

3. The image is passed in 
the GPU again which 
maps a color map on it.

4. Parallax, mag can be 
mapped to the 
size/opacity of the kernel.



WebGL HiPS visualizer: Some other features in development

● Texture blending between tiles that have just been loaded
● Equatorial grid (not fully implemented) adaptable to all projections
● Mouse inertia when the mouse button/finger is released
● Moving animation between 2 locations on the sky

...

Nothing is better than a...



WebGL HiPS visualizer demo http://cdsportal.u-strasbg.fr/webgl/

https://cdsportal.u-strasbg.fr/webgl/


What are the next steps ?
● Preparing for different types of platforms...
● Lots of work to do:

○ Responsive js/css UI for a mobile compatible version
○ Render FITS images on top of a HiPS
○ Real-time texture generation by blending FITS tiles from several HiPSes
○ Support more projections
○ (future potential for planet surface rendering using height map HiPS)

● Integrate WebGL code into Aladin-Lite as a improved visualization interface 
○ Will not tend to fully replace the existing Aladin-Lite 
○ Aladin Lite API will remain the same



VO data access and 
visualization developments

Thank you!


