Forward modeling of galaxy kinematics in slitless spectroscopy

Credits: M. Outini's PhD, 2019 Outini & Copin, A&A (accepted), arxiv:1910.07803

Yannick Copin – Institut de Physique des Deux Infinis – Université de Lyon

Slitless spectroscopy 101

Spectrogram example

Galaxy 451-MACS2129 @ z=1.36 (HST-GLASS)

Slitless spectroscopy

Advantages

- Large FoV and high multiplexing
- Simple to build and to operate

Drawbacks

- (High background level \rightarrow space)
- Cross-contamination: overlap of different objects (potentially at different orders)
 - Mitigation: multi-roll observations & decont. model
- Self-contamination: mixing of spatial and spectral information
 - Effective spectral resolution is dependent of source size and relative orientation

Cross-dispersion spectrum

Multi-roll x-disp. spectra

y [px]

Spectrogram modeling

Dispersed image

$$\mathbf{I}(\mathbf{r}) = \int d\lambda \ (\mathbf{C} \otimes \mathbf{P})(\mathbf{r} - \Delta(\lambda), \lambda) \times \mathsf{T}(\lambda)$$

- Observation I(r): 2D spectrogram
- Source C(r, λ): intrinsic spectro-spatial flux distribution ("cube")
- Instrumental signature
 - ► $P(\lambda)$: Impulse Response Function ("PSF")
 - $\Delta(\lambda)$: dispersion law
 - ► $T(\lambda)$: transmission

Forward modeling

Forward modeling

- Build a predictive model
- Compare predicted spectrograms to observed ones
- Derive max-likelihood parameters
- Two stages
 - ◆ Calibration: reference source (e.g. star) → instrumental parameters
 - ◆ Science: calibrated instrument
 → intrinsic source parameters

Kinematic signature in slitless

Kinematic signature in slitless

Forward model

Assumptions

- $C(\mathbf{r}, \lambda) = F(\mathbf{r}) \times S(\lambda)$: separability (= uniformity)
- $\int d\lambda F \otimes P \approx B(\mathbf{r})$: broadband image

• Spectrum: continuum + emission lines

- ◆ Hα+[NII], [SII], [OIII], etc.
- Parameters: redshift, amplitude, cont. level, etc.
- Velocity field: cold thin disk approximation
 - 2-parameter RC: $v(r)/sin i = v_0 tanh(w_0 r / v_0)$
 - Velocity field impact: $S(\lambda) \rightarrow S(\lambda / (1 + v(r)/c))$

Instrumental parameters: supposedly known

Few nuisance parameters

13 Nov. 2019

-15

13300

13400

11

Simulations - HST-WFC3/G102

Simulations - HST-WFC3/G102

Observations - HST-WFC3/G102

kin. detection from slitless spectro. 1st

Impact on redshift measurements (HST)

Redshift

- Significant improvement for resolved galaxies, scale with multi-roll observations
- Could easily be generalized to spectral template fitting (no $2D \rightarrow 1D$ info loss)
- Galaxy kinematics: only for bright, large, massive disk galaxies

Euclid simulations – NISP-R

- Better spectral sampling (~13 A/px)
- Coarser spatial resolution (0.3 "/px)
- Exp. disk, r_d ~ 0.5''
- Simulation of a single roll (dither)

Impact on FoM

Full forward model

- Both for calibration and science analysis
- Foreseeable redshift precision: $\sigma_z/(1+z) \sim 5e-4$

◆ ×2 better than requirements

• FoM prediction (Wang+10, Red Book)

- $F_{H\alpha}$ > 4e-16 erg/s/cm², 0.5 < z < 2.1, 20 000 deg², e = 0.5
- ◆ Forward model: FoM + 15%

Conclusions

Better understanding of slitless spectroscopy

Still, fundamental spectro-spatial degeneracy cannot be recovered

• Call for full forward modeling (calibration + analyses)

- Optimal treatment of available observations
 - \blacktriangleright Calibration: instrument model \rightarrow minimize overhead
- Major impact on redshift precision for resolved sources
- Natural method for decontamination
- Galaxy kinematics w/ Euclid
 - Possible for a small fraction (yet to be quantified) of 30M galaxies
 - ► Definitely easier in the Deep Survey (deeper, ~40 rolls)
 - Open new perspectives: morpho-kinematic classification, distance estimates (e.g. Tully-Fisher), cosmography & cosmology

To be continued...