# Preliminary fit for CUPID-Mo Background Model

G. Benato for V. Singh and J. Johnston December 12<sup>th</sup> 2019

#### Data

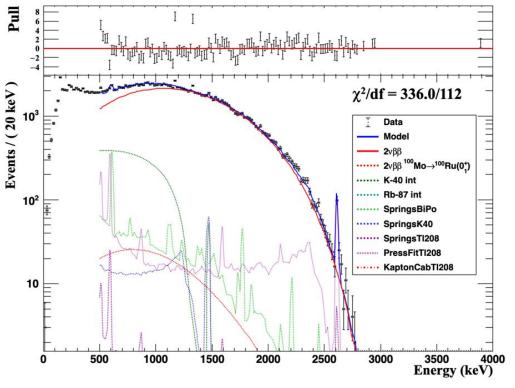
- Two datasets used: DS 8037, 8038 (same as used for TAUP 2019)
- Channel 3 excluded (noisy)
- Cut used: "Channel != 3 && IsGamma && PSAcut && M1"

## Efficiency & Exposure summary stats

- Global efficiency across all detectors, flat starting at 500 keV
  Fit threshold set at 500 keV
- Efficiencies:
  - BaseCuts: 97.1 ± 0.4 %
  - $\circ$  Rise + decay time (unfiltered pulse-shape): 94.7  $\pm$  0.1 %
  - LY + NormDelay + NormBaseline:  $88.3 \pm 0.3 \%$
  - Total efficiency of all cuts: 81.1 ± 0.5 %
- Total mass 3.95 kg; livetime 0.129 yr
  - → Exposure: 0.51 kg·yr

## Monte-Carlo files from Pia

- "Crystals\_2n2b\_10M"  $\Rightarrow 2\nu\beta\beta$
- "Springs\_BiPo" → Only <sup>214</sup>Bi+<sup>214</sup>Po simulated, not the full chain
- "Springs\_40K"
- "Springs\_208TI"
- "Kapton\_cables\_TI208"
- "Press\_fit\_Tl208"


# Smearing of energy resolution

- Smearing performed using resolution scaling across all detectors: TMath::Sqrt([0]\*\*2+[1]\*x)
  - p0 -1.61851e+00
  - p1 1.84754e-02
- Channel-by-channel energy smearing to be implemented in the future

## **Internal Contamination**

- Same MC files as used for Lumineu
- Internal contamination
  - 0 <sup>40</sup>K
  - o <sup>87</sup>Rb
  - o <sup>90</sup>Y/<sup>90</sup>Sr
  - $\circ$  2v $\beta\beta$  to excited state.
- Note that these were already smeared using resolution function for Lumineu.
- For preliminary studies it probably won't matter if we take a wide enough binning, for example, 20 keV.
- We will need to use the correct smearing in future.

# Preliminary Fit in [500,4000] keV range



- Fit recipe identical to Lumineu analysis (20 keV binning)
- Don't have simulation for <sup>60</sup>Co
  - → Poor chi-square
- Fit does not converge if I include <sup>90</sup>Sr/<sup>90</sup>Y but we are also missing simulations for lower energies
- $T_{1/2} = (7.101^{+0.033}) \cdot 10^{18} \text{ y}$ 
  - → Close to Lumineu value
- More MC available as of today

| EDM = 0.000820307                  | 8 items                                        |
|------------------------------------|------------------------------------------------|
| -log(L) at minimum = -497898       |                                                |
| final value of floating parameters |                                                |
| 1) RooRealVar::                    | f2b2nu = 139730 +/- (-654.77,630.343)          |
| 2) RooRealVar::                    | fK40Int = 19973.5 +/- (-826.297,801.473)       |
| 3) RooRealVar:: fKapto             | nCabTl208 = 0.0150719 +/- (-0.0150719,1368.64) |
| 4) RooRealVar:: fPres              | sFitTl208 = 10894.8 +/- (-1414.18,951.308)     |
| 5) RooRealVar:: fSp                | ringsBiPo = 6510.63 +/- (-887.136,915.702)     |
| 6) RooRealVar:: fS                 | pringsK40 = 1787.89 +/- (-946.662,1021.47)     |
| 7) RooRealVar:: fSpr               | ingsTl208 = 413.741 +/- (-285.5,554.444)       |

## New simulations available as of today

Internal contaminations:

- $2b2n_{10}M.root \rightarrow 2\nu\beta\beta^{100}Mo\ 0+ \rightarrow 0+$ , in one single LMO crystal
- crystal\_k40\_10M.root  $\rightarrow$  <sup>40</sup>K in one single LM crystal
- Crystal\_bi210.root → <sup>210</sup>Bi in one single LM crystal
- Crystal\_pb210.root → <sup>210</sup>Pb in one single LM crystal

External (far) contaminations:

- External\_Bi214.root → <sup>214</sup>Bi in 300K screen
- External\_Pb214.root: → <sup>214</sup>Pb in 300K screen
- External\_TI208.root → <sup>208</sup>TI in 300K screen
- External\_Pb212.root  $\rightarrow$  <sup>212</sup>Pb in 300K screen

# New simulations available as of today

External (close) contaminations:

- Springs\_208Tl.root  $\rightarrow$  <sup>208</sup>Tl in springs
- Springs\_40K.root  $\rightarrow$  <sup>40</sup>K in springs
- Springs\_BiPo.root  $\rightarrow$  <sup>214</sup>Bi-<sup>214</sup>Po in springs
- Kapton\_conn\_cable\_tl208.root
  - → <sup>208</sup>TI in kapton connectors on EW detectors; kapton cables on 3 support columns
- Kapton\_conn\_cable\_bi212.root
  - → <sup>212</sup>Bi-<sup>212</sup>Po in kapton connectors on EW detectors; kapton cables on 3 support columns
- Kapton\_conn\_cable\_bi214.root
  - → <sup>214</sup>Bi in kapton connectors on EW detectors; kapton cables on 3 support columns
- Brass\_screws\_tl208.root
  - $\rightarrow$  <sup>208</sup>TI in brass screws on columns supporting the bolometer-plates
- Brass\_screws\_bi212.root
  - → <sup>212</sup>Bi-<sup>212</sup>Po in brass screws on columns supporting the bolometer-plates

# Missing Background components

- <sup>60</sup>Co
- <sup>137</sup>Cs
- Generate the entire U/Th chain instead of generating individual background components and adding them together later on (assuming secular equilibrium)?
   Delayed coincidence analysis might help understanding if we need full chains
- We prefer to first focus on getting the fit right in [500,4000] keV range, unless we are confident that we understand efficiency below 500 keV.

## Plans for near future (after Christmas)

- Switch to BAT (or STAN)
  - → Internally use Markov Chain, thus automatically provides non-approximated parameter correlations
  - → Machinery at a good stage, will take a few weeks to further test and debug
- Use new simulations
- Run missing simulations
- Use all available statistics
- Fix energy resolution smearing
- Implement efficiency curve on MC
- Split spectra by tower or by channel
- Include fit of a spectrum?