Measurement of the $2\nu 2\beta$ decay of ¹⁰⁰Mo with CUPID-Mo precursors

Fedor Danevich

Institute for Nuclear Research, Kyiv, Ukraine

F.A.Danevich Measurement of the $2\nu 2\beta$ decay of ¹⁰⁰Mo with CUPID-Mo precursors: prelim. res. CUPID-Mo Inauguration Dec 12, 2019, Modane

1/14

Experiment

Li₂¹⁰⁰MoO₄ scintillators

Detectors assembling

enrLMOs LMO1b Ge LD CLMO2b Ge LD LMO2b Ge LD LMO2t Ge LD CLMO2t Ge LD

EDELWEISS-III set-up at the Modane Underground Laboratory, 4800 m of water equivalent

Li₂¹⁰⁰MoO₄ crystal scintillators used in the experiment

Crystal number, mass (g), size (mm)	¹⁰⁰ Mo isotopic concentration (%)	Number of ¹⁰⁰ Mo nuclei	Live time (h)	
			Setup 1	Setup 2
#1, 185.86, Ø43.6×40.0	96.93(7)	6.105(9)×10 ²³	1331.03	1000.58
#2, 203.72, Ø43.6×44.2	96.93(7)	6.692(10)×10 ²³		997.64
#3, 212.61, Ø43.9×45.6		6.981(16)×10 ²³		1037.92
#4, 206.68, Ø43.9×44.5		6.786(15)×10 ²³		756.59

2/14

F.A.Danevich Measurement of the $2\nu 2\beta$ decay of ¹⁰⁰Mo with CUPID-Mo precursors: prelim. res.

Li₂¹⁰⁰MoO₄ detectors performance

 Li_2MoO_4 scintillation bolometers were first proposed in [1] and developed by the LUMINEU project [2]

High radio-purity (< 3 μBq/kg of ²²⁸Th and ²²⁶Ra,
 5 μBq/kg of ²³⁸U) [3]

•

 The established technology of Li₂¹⁰⁰MoO₄ crystal growth (high yield of crystal boule: > 80%, low irrecoverable losses: ~2-3%, recovery procedure for ¹⁰⁰Mo is developed)

0

2000

4000

6000

8000

Energy (keV)

The experiment was realized in two steps:

"setup 1" and "setup 2"

- The contributions of external γ from ²²⁶Ra and ²²⁸Th can be estimated from γ peaks of ²¹²Pb, ²¹⁴Pb, ²¹⁴Bi, ²⁰⁸Tl
- The 1462.8 keV peak is due to potassium in the crystals and in the set-up

F.A.Danevich

Measurement of the $2\nu 2\beta$ decay of ¹⁰⁰Mo with CUPID-Mo precursors: prelim. res. CUPID-Mo Inauguration Dec 12, 2019, Modane

4/14

Model of background

The sum 42.235 kg×d energy spectrum was fitted in (120-2000) keV −3000 keV by the following model:

- $2\nu 2\beta$ decay to the ground state
- 2v2β decay to the first 0⁺ excited level of ¹⁰⁰Ru

 $T_{\frac{1}{2}}^{2\nu_2\beta}(0_1) = (7.5 \pm 0.8) \times 10^{20} \text{ yr} [1]$

- Internal ⁴⁰K, ⁹⁰Sr ⁹⁰Y, ⁸⁷Rb, ²¹⁰Pb-²¹⁰Bi
- External ⁴⁰K, ¹³⁷Cs, ²²⁸Ra, ²²⁸Th, ²²⁶Ra, ²¹⁰Pb

The model describes the experimental data very well with $\chi^2/n.d.f. = 120.9/126$

[1] R. Arnold et al., NPA 925 (2014) 25

F.A.Danevich Measurement of the $2\nu 2\beta$ decay of ¹⁰⁰Mo with CUPID-Mo precursors: prelim. res.

- 1⁺ intermediate state dominates the $2\nu 2\beta$ -decay. This is so called the single-state dominance hypothesis (SSD), in contrast to the high-state dominance (HSD) [2]. "¹⁰⁰Mo is one of the few cases where the SSD may have some merit" [3]
 - 0.001 1000 2000
- The HSD model is excluded with high confidence by the NEMO-3, while the SSD model is consistent with the data [4]
- We have used SSD spectrum to estimate the $T_{1/2}$

[1] J. Abad et al., Ann. Fis. A 80 (1984) 9 [2] P. Domin et al., Nucl. Phys. A 735 (2005) 337 [3] F. lachello, private communication [4] R. Arnold et al., Eur. Phys. J. C 79 (2019) 440 300

300

6/14

F.A.Danevich Measurement of the $2\nu 2\beta$ decay of ¹⁰⁰Mo with CUPID-Mo precursors: prelim. res. CUPID-Mo Inauguration Dec 12, 2019, Modane

The half-life of ¹⁰⁰Mo

The fit (χ^2 /n.d.f. = 0.82) in the 1500 – 3000 keV interval returns 8370⁺⁶³⁹₋₉₁₂ events (the interval contains 23% of the whole 2v2β-distribution)

$$T_{1/2}^{2\nu_2\beta} = [7.12 + 0.18 - 0.14] \times 10^{18} \text{ yr}$$

The signal / background ≈ 10

F.A.Danevich Measurement of

Measurement of the $2\nu 2\beta$ decay of ¹⁰⁰Mo with CUPID-Mo precursors: prelim. res. (

Estimated systematic uncertainties (%)

Binning of the energy spectrum	±0.8
Localization of radioactive sources	±0.8
Selection efficiency to accept $\boldsymbol{\beta}$ events	±0.6
$2\nu 2\beta$ spectral shape	±0.4
Monte Carlo simulated models statistic	±0.4
Background composition	±0.3
Exposure of ¹⁰⁰ Mo	±0.2
Energy scale	±0.2
$T_{1/2}^{2\nu2\beta} 100 \text{Mo} \rightarrow 100 \text{Ru}(0^{+})$	±0.1
Total systematic error	±1.4

$$T_{1/2}^{2\nu_2\beta} = [7.12 + 0.18 + 0.10 \text{ (syst)}] \times 10^{18} \text{ yr}$$

$$T_{1/2}^{2\vee 2\beta} = (7.12 + 0.21) \times 10^{18} \text{ yr}$$

F.A.Danevich

Measurement of the $2\nu 2\beta$ decay of ¹⁰⁰Mo with CUPID-Mo precursors: prelim. res.

History of the ¹⁰⁰Mo $T_{1/2}$ (×10¹⁸ yr) from the Li₂¹⁰⁰MoO₄ data

Conclusion: The half-life is proportional to the time spent for and number of people involved in the data analysis...

[1] E. Armengaud et al., Eur. Phys. J. C 77 (2017) 785
[2] E. Armengaud et al., AIP Conf. Proc. **2165** (2019) 020005
[3] E. Armengaud et al., in proparation (2020)

[3] E. Armengaud et al., in preparation (2020)

F.A.Danevich Measurement of the $2\nu 2\beta$ decay of ¹⁰⁰Mo with CUPID-Mo precursors: prelim. res.

CUPID-Mo and other ¹⁰⁰Mo experiments

[5] A. De Silva et al., Phys. Rev. C 56 (1997) 2451

Measurement of the $2\nu 2\beta$ decay of ¹⁰⁰Mo with CUPID-Mo precursors: prelim. res. CUPID-Mo Inauguration Dec 12, 2019, Modane

10/14

F.A.Danevich

Comparison with $T_{1/2}$ for other $2\beta^{-}$ nuclei

F.A.Danevich Measurement of the $2\nu 2\beta$ decay of ¹⁰⁰Mo with CUPID-Mo precursors: prelim. res. CUPID-Mo Inauguration

The actual half-life of ¹⁰⁰Mo

Taking into account that ¹⁰⁰Mo nuclei decay by the two modes: to the ground state and to the first O⁺ excited level of ¹⁰⁰Ru, the actual half-life of ¹⁰⁰Mo (using the most accurate measurement of the decay of ¹⁰⁰Mo to the first O⁺ 1130.3 keV excited level of ¹⁰⁰Ru [1]) is:

$$T_{1/2} = (7.05 + 0.21 + 0.17) \times 10^{18} \text{ yr}$$

In other words, the branching ratio is 99.08(10)% for the $2\nu 2\beta$ decay of ¹⁰⁰Mo to the ground state, and 0.92(10)% for decay to the first 0⁺ 1130.3 keV excited level of ¹⁰⁰Ru

[1] R. Arnold et al., NPA 925 (2014) 25

F.A.Danevich Measurement of the $2\nu 2\beta$ decay of ¹⁰⁰Mo with CUPID-Mo precursors: prelim. res. C

An effective nuclear matrix element for $2\nu 2\beta$ decay of ¹⁰⁰Mo

An effective nuclear matrix element for $2\nu 2\beta$ decay of ¹⁰⁰Mo to the ground state of ¹⁰⁰Ru, assuming the SSD mechanism, by using the phase-space factor 4134×10^{-21} yr⁻¹ calculated in [1]:

$$|M_{2\nu}^{\rm eff}| = 0.184 + 0.002 - 0.003$$

The effective nuclear matrix element can be written as a product $|M_{2v}^{eff}| = g_A^2 \times M_{2v}$, where g_A is axial vector coupling constant, M_{2v} is nuclear matrix element, that is almost independent on the g_A and can be calculated with a reasonable accuracy.

[1] J. Kotila, F. lachello, Phys. Rev. C 85 (2012) 034316

F.A.Danevich Measurement of the $2\nu 2\beta$ decay of ¹⁰⁰Mo with CUPID-Mo precursors: prelim. res.

Summary and Prospects

• The half-life of ¹⁰⁰Mo relatively to the $2v2\beta$ decay to the ground state of ¹⁰⁰Ru is measured with a highest accuracy (2.9%) :

 $T_{1/2}^{2\nu_2\beta} = [7.12 + 0.18 + 0.10 \text{ (syst)}] \times 10^{18} \text{ yr}$

- The accuracy was achieved with only \approx 0.12 kg \times yr exposure thanks to:
 - utilization of enriched detectors
 - negligible radioactive contamination and low background
 - high energy resolution o
 - clearly defined detection efficiency
- The accuracy can be further improved in the CUPID-Mo with 20 detectors in progress
- Depleted in ¹⁰⁰Mo Li₂^{100depl}MoO₄ crystals (0.007% of ¹⁰⁰Mo) are already produced to investigate the $2\nu 2\beta$ spectrum shape (mechanism of decay: SSD vs HSD, hypothetical decays, etc.), and to improve background understanding

F.A.Danevich Measurement of the $2\nu 2\beta$ decay of ¹⁰⁰Mo with CUPID-Mo precursors: prelim. res. CUPID-Mo Inauguration Dec 12, 2019, Modane

14/14

Bias in the energy spectrum

Shift of peaks positions before (upper panel) and after (lower panel) the energy scale correction (by Fedor).

Events selection efficiency

The efficiency is known reliable after 500 keV

Binning of the energy spectrum

Localization of radioactivity in the set-up

Fit in 120 - 3000 keV

Fit in 1500 - 3000 keV

