

Cuore Upgrade with Particle IDentification

M. Pavan INFN and Università di Milano – Bicocca

On behalf of the CUPID Collaboration

CUPID

Cuore Upgrade with Particle IDentification

CUORE infrastructure with a new detector

Discovery sensitivity:

|τ_{1/2}(¹⁰⁰Mo)>10²⁷ y

 $m_{_{\beta\beta}} < 20 \text{ meV}$

CUPID concept

CUORE ¹³⁰Te pure thermal detector (bolometer)

No PID

$$Q_{\beta\beta}$$
 < 2615 keV

CUPID ¹⁰⁰Mo heat + light (scintillating bolometer)

Q₆₆ > 2615 keV

PID

CUORE bkg model

most measured background is due to α particles (U/Th contaminations on surfaces close to the TeO₂ crystals)

CUPID-0 and CUPID-Mo observe a similar flat continuum

CUORE bkg model

subdominant contributions are

cosmogenic muons

 γ 's from contaminations in cryostat & shields intrinsic contribution of CUORE infrastrucure

from CUORE to CUPID

CUPID new detector

- \rightarrow PID allows to reject α 's
- ¹⁰⁰Mo implies the $0\nu\beta\beta$ signal is at 3 MeV

Conceptual Design Report (pre-CDR)

CUPID pre-CDR arXiv:1907.09376

~ 170 authors 7 countries

new contributions are welcome

The CUPID Interest group is a robust international collaboration that brings together an array of experts that will contribute to a successful program. University of California Los Angeles, Los Angeles, CA, USA K. Alfonso, H.Z. Huang

Argonne National Laboratory, Argonne, IL, USA W.R. Armstrong, C. Chang, K. Hafidi, M. Lisovenko, V. Novosad, J. Pearson, T. Polakovic, G. Wang, V. Yefremenko, J. Zhang

INFN Laboratori Nazionali del Gran Sasso, Assergi (AQ) Italy C. Bucci, L. Canonica, L. Cappelli, V. Caracciolo, S. Copello, A. D'Addabbo, P. Gorla, S. Nisi, D. Orlandi, C. E. Pagliarone, L. Patavina, S. Pirro, C. Rusconi, K. Schaffner

landi, C. E. Pagliarone, L. Pattavina, S. Pirro, C. Rusconi, K. Schaffner Lawrence Berkelev National Laboratory and University of California. Berkelev, CA, U.

Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA G. Benato, A. Drobizhev, B. K. Fujikawa, R. Huang, Yu. G. Kolomensky, L. Marini, E. Norman, M. Sakai, B. Schmidt, V. Singh, K. Vetter, S. Wagaarachchi, J. Wallig, B. Welliver

Virginia Tech, Blacksburg, VA, USA

INFN Sezione di Bologna and University of Bologna, Bologna, Italy S. Zucchelli, N. Mogi

INFN Sezione di Bologna and CN-IMM, Bologna, Italy V.Boldrini, F. Mancarella, R.Rizzi

Massachusetts Institute of Technology, Cambride, MA, USA J. Johnston, J. Ouellet, J. Formaggio, L. Winslow

University of South Carolina, Columbia, SC, USA F. Avignone, C. Rusconi, R. Creswick and K. Wilson

INFN Laboratori Nazionali di Frascati, Frascati, Italy A Franceschi T Nanolitano

INFN Sezione di Genova and University of Genova, Genova, Italy A. Caminata, S. Di Domizio, M. Pallavicni

SIMAP Grenoble, France M. Velazouez

University of Science and Technology of China, Hefei, China H. Peng, M. Xue

KINR Kiev, Ukraine F. Danevich, V. Kobychev, O. Polischuk, V. Tretvak

INFN Laboratori Nazionali di Legnaro, Italy O. Azzolini, G. Keppel, C. Pira

O. Azzolini, G. Keppel, C. Pira INFN Sezione di Roma and Gran Sasso Science Institute, L'Aquila, Italy

F. Ferroni

INFN Laboratori Nazionali del Gran Sasso and Gran Sasso Science Institute, L'Aquila, Italy V. Dompè, G. Fantini

IPNL Lyon, Franco Q. Arnand, C. Augier, J. Billard, A. Cazes, F. Chartieux, E. Elkhoury, J. Gascon, M. De Jesus, A Juillard, D. Misaik, V. Sanglard, L. Vagneron INFN Sezione di Milano Bicocca and University of Milano Bicocca. Milano. Italy

INFN Sezione di Milano Bicocca and University of Milano Bicocca, Milano, Italy M. Beretta, M. Biasoni, C. Brofferio, S. Capelli, P. Carniti, D. Chiesa, M. Clemenza, O. Cremonesi, M. Faverzani, E. Ferri, A. Gincher, L. Gforni, C. Gotti, M. Nastasi, I. Nutini, L. Pagnanini, M. Pavan, G. Pessina, S. Pozzi, E. Previtali, A. Puin, M. Sisti

A M. ITEP Moscow, Russia A. Barabash, S. Konovalov, V. Yumatov

> Yale University, New Haven, CT, USA K. Heeger, R. Maruyama, J. Nikkel, D. Speller, P. T. Surukuchi

NIIC Novosibirsk, Novosibirk, Russia V. Shlegel

CSNSM Orsay, France La Bergé, M. Chapeller, L. Dumoulin, A. Giuliani, H. Khalife, P. de Marcillac, S. Marnieros, E. Olivieri D. Poda, T. Redon, A. Zolotarova

LAL Orsay, France M. Brière, C. Bourgeois, E. Guerard, P. Loaizs

INFN Sezione di Padova, Padova, Italy L. Taffarello

Drexel University, Philadelphia, PA, USA G. Karapetrov

INFN Sezione di Roma and Sapienza University of Rome, Rome, Italy F. Bellini, L. Cardani, N. Casali, A. Cruciani, I. Dafinei, V. Pettinacci, G. D'Imperio, C. Tomei, M. Vignati

INFN Sezione di Roma and CNR-NANOTEC, Rome, Italy I. Colantoni

CEA Saclay, France E. Armengaud, A. Charrier, M. de Combarieu, F. Ferri, Ph. Gras, M. Gros, D. Helis, X.F. Navick, C. Nones, P. Pari, B. Paul

Cal Poly, San Luis Obispo, CA, USA T. Gutierrez

Shanghai Jiao Tong University, Shangai, China K. Han

Fudan University, Shangai, China L. Ma, Y. Shen, W. He

Universidad de Zaragoza, Zaragoza, Spain M. Martinez

CUPID CDR

conservative & mature & data driven baseline design

CUORE CUPID-0 CUPID-Mo

Feasibility of a tonne scale experiment with 1000 indipendent detectors

- Cryogenics
- Shield System
- Assembly
- Electronics + DAQ + DA

Feasibility of a tonne scale experiment with 1000 indipendent detectors

- Cryogenics
- Shield System
- Assembly
- Electronics + DAQ + DA

- THE LARGEST 10 mK REFRIGERATOR EVER BUILT
- COOLING POWER EVEN BEYOND EXPECTATIONS
- NOW DUTY CYCLE (Physics Data) ~ 60%
- LARGE VOLUME AVAILABE FOR DETECTOR

Feasibility of a tonne scale experiment with 1000 indipendent detectors

- Cryogenics
- Shield System
- Assembly

- ROMAN Pb SURROUNDING THE DETECTOR (6 cm @ 4K)
- COMMERCIAL Pb (25 cm @ 300K)
- NEUTRON SHIELD
- NO MUON VETO
- Electronics + DAQ + DA

Feasibility of a tonne scale experiment with 1000 indipendent detectors

- Cryogenics
- Shield System
- Assembly

- 1000 DETECTORS ASSEMBLED IN CLEAN ROOM
- DEDICATED TOOLS FOR GLUING & BONDING
- HIGH REPRODUCIBILITY
- Electronics + DAQ + DA

Feasibility of a tonne scale experiment with 1000 indipendent detectors

- Cryogenics
- Shield System
- Assembly
- Electronics + DAQ + DA
- ELECTRONICS FULLY OPTIMIZED
- COMMERCIAL DAQ → CUSTOM DAQ
- DA FOR 1000 DETECTORS

Feasibility of a tonne scale experiment with 1000 indipendent detectors

- Cryogenics
- Shield System
- Assembly
- Electronics + DAQ + DA

- Background Model
- LOCALIZATION OF BACKGROUND SOURCES IN
 THE CUORE INFRASTRUCTURE WITH A
 SENSITIVITY HIGHER THAN THAT ACHIEVABLE BY
 MATERIAL SCREENING

CUPID-0

25 crystals of Zn⁸²Se (5.5 kg of ⁸²Se LNGS Hall A)

First $0\nu\beta\beta$ experiment with scint. bolometers

- first direct evidence that "flat bkg" is $\boldsymbol{\alpha}$
- demonstrator of dual read-out technique

CUPID-Mo

20 crystals Li₂¹⁰⁰MoO₄ (2.264 kg of ¹⁰⁰Mo @ Modane)

• first experiment $0\nu\beta\beta$ with $Li_2^{100}MoO_4$ scintillating bolometers

CUPID conceptual design

- Li₂¹⁰⁰MoO₄ scintillating crystals
 - enrichment > 95%
 - Ø=50mm, h=50mm → 308 g
 - ► ~1534 crystals ~250 kg of ¹⁰⁰Mo
 - Δ E FWHM ~ 5 keV at Q_{ββ} ~ 3034 keV
 - α rejection using light signal

 $\begin{array}{rcl} \textbf{0v}\beta\beta \text{ sensitivity } & \rightarrow & \tau_{1/2} \sim \ 10^{27} \text{ y} \\ & \rightarrow & m_{_{\beta\beta}} \ 12\text{--}20 \ meV \end{array}$

CUPID

Table 1: Main parameters of the conservative baseline CUPID detector design.

Parameter	Baseline	
Crystal	$\rm Li_2MoO_4$	
Crystal size	$\oslash 50 \mathrm{~mm} imes \mathrm{h} 50 \mathrm{~mm}$	
Crystal mass (g)	308	
Number of crystals	1534	
Number of light detectors	1652	
Detector mass (kg)	472	
100 Mo mass (kg)	253	
Energy resolution FWHM (keV)	5	
Background index $(counts/(keV \cdot kg \cdot yr))$	10^{-4}	
Containment efficiency	79%	
Selection efficiency	90%	
Livetime	10 years	
Half-life limit sensitivity (90%) C.L.	$1.5 \times 10^{27} \text{ y}$	
Half-life discovery sensitivity (3σ)	$1.1 \times 10^{27} \text{ y}$	
$m_{\beta\beta}$ limit sensitivity (90%) C.L.	$10-17~{ m meV}$	
$m_{\beta\beta}$ discovery sensitivity (3 σ)	12-20 meV	

CUPID background projection

Crystals

- → U/Th bulk (from CUPID-Mo)
- → U/Th surface (CUORE bkg model)
- $\rightarrow 2\nu\beta\beta$ pile-up

($\tau_{1/2}$ = 7.1 10¹⁸ y \rightarrow xtal mass is a compromise)

CUPID background projection

Holder → U/Th surfaces (CUPID-0 bkg model)

Cryogenic & Shielding Infrastructure → U/Th bulk (CUORE bkg model)

CUPID background projection

Figure 45: Breakdown of the CUPID β/γ counting rate predicted by the BM in the $^{100}\mathrm{Mo}$ ROI. Here, the baseline configuration is consid-As discussed in the ered. text, the substitution of the reflective foil with a reflective coating on Li_2MoO_4 crystals would dramatically reduce both the U and Th contributions of crystals (here dominated by surface contaminants) and that of the reflector itself.

Ultraconservative: no improvement in signal timing ($2\nu\beta\beta$ pile-up) no improvement in reflecting foil contribution (coating)

CUPID sensitivity

CUPID CDR = ultraconservative approach \rightarrow exactly what we have today

CUPID reach = improvement at reach before construction

- \rightarrow signal timing (from NTD performances to TES)
- → surface radiopurity & crystal coating

zero bkg condition ~ 2 10⁻⁵ c/keV/kg/y

CUPID1-ton = new 4 times larger cryostat

1 ton ¹⁰⁰Mo and (in case of discovery) other isotopes

bkg ~ 5 10⁻⁶ c/keV/kg/y

Sensitivity

Timeline, Cost & Future

TDR and construction readiness for end 2021

Schedule and budget will be driven by ¹⁰⁰Mo enrichment ~4 years

Modest cost, compared to the next-generation experiments with similar sensitivity. enriched material < 20 Meuro

Future:

- Bkg reduction & mass increase is feasible
- real opportunity of exploring more isotopes with the same technique $TeO_2 - ZnSe - Li_2MoO_4 - CdWO_4$

Thanks

BACKUP SLIDES

CUPID sensitivity

Parameter	CUPID Baseline	$\operatorname{CUPID-reach}$	CUPID-1T
Crystal	$\mathrm{Li}_2{}^{100}\mathrm{MoO}_4$	$\mathrm{Li}_2{}^{100}\mathrm{MoO}_4$	$\mathrm{Li}_2^{100}\mathrm{MoO}_4$
Detector mass (kg)	472	472	1871
100 Mo mass (kg)	253	253	1000
Energy resolution FWHM (keV)	5	5	5
Background index $(counts/(keV \cdot kg \cdot yr))$	10^{-4}	2×10^{-5}	$5 imes 10^{-6}$
Containment efficiency	79%	79%	79%
Selection efficiency	90%	90%	90%
Livetime (years)	10	10	10
Half-life exclusion sensitivity (90% C.L.)	$1.5 \times 10^{27} \text{ y}$	$2.3 \times 10^{27} \text{ y}$	$9.2 \times 10^{27} \text{ y}$
Half-life discovery sensitivity (3σ)	$1.1 \times 10^{27} \text{ y}$	$2 \times 10^{27} { m y}$	$8 imes 10^{27}$ y
$m_{\beta\beta}$ exclusion sensitivity (90% C.L.)	$1017~\mathrm{meV}$	$8.214~\mathrm{meV}$	$4.1–6.8~{\rm MeV}$
$m_{\beta\beta}$ discovery sensitivity (3 σ)	$1220~\mathrm{meV}$	$8.815~\mathrm{meV}$	$4.47.3~\mathrm{meV}$

Crystals & Enrichment

- Enrichment @ Electro-Chemical Plant (ECP) in Zelenogorsk, Russia
- Production capability~70 kg/yr
- (95% enr)¹⁰⁰Mo available with 2 purification level

- Crystal growth from LTG Czochralski technique
 - $MoO_3 + Li_2CO_3 \rightarrow Li_2MoO_4 + CO_2.$
 - Double crystallisation
 - Commercial Li powder