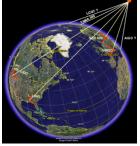
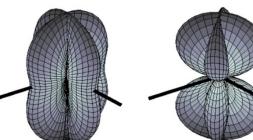
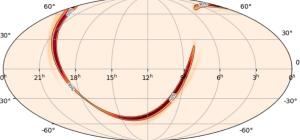

Vers une calibration de précision des détecteurs d'OG B. Mours IPHC, L. Rolland LAPP for the Virgo Calibration group

Séminaire Thématique "Détecteurs et instrumentation associée" (GT-08) January 24, 2020, Orsay Exercice de prospective nationale en physique nucléaire, physique des particules et astroparticules

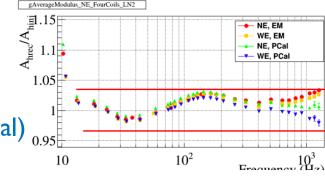
Why an accurate calibration for GW: Hubble constant


- Measuring the Hubble Constant:
 - Measurements with distance ladder
 - > around 73 km/s/Mpc
 - CMB/BAO measurements
 - ▶ around 67 km/s/Mpc



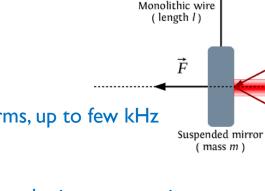

- One GW event (GW170817): $H_0 = 72.4^{+7.9}_{-7.3} \text{ km s}^{-1} \text{ Mpc}^{-1}$ (7.6%.)
- Error on absolute h(t) calibration directly translate to H₀ error
 - The event rate is expected to increasing by a factor 3 at each run
 - Need to target sub-percent sensitivity for O5
 - Event more challenging for Einstein Telescope

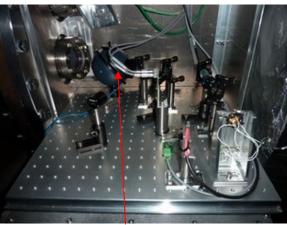
Why an accurate calibration for GW: sky maps



- Need a reconstructed h(t) accurately calibrated in:
 - Amplitude
 - Current SNR up to 20-30
 - Could expect SNR close to 100 within few years and much more with ET
 - ightarrow
 ightarrow require sub-percent accuracy
 - Time/phase over the full frequency spectrum (need to target less than 10 us)
 - + Cross calibration between detectors

Calibration basic


Principle: inject a know mirror displacement and validate/correct h(t).

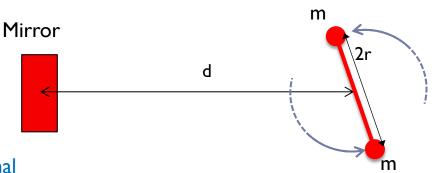

- Checks with a set of frequencies (runs) or large freq. band (dedicated studies)
- Three techniques to move the mirrors:
 - Radiation pressure using an auxiliary laser (PCal)
 - Newtonian force using moving masses (Ncal)
 - Electromagnetic actuators (not the most accurate in the long run)
- Common challenges:
 - Do not introduce additional noise beside the injected calibration signals
 - Cross calibration with LIGO and KAGRA
 - Stringer requirements as the sensitivity improves

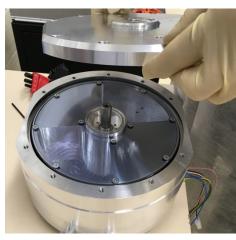
Photon Calibrator (PCal)

- Modulate the power of an auxiliary laser beam
- Benefits:
 - Versatile system: easy to produce complex waveforms, up to few kHz
 - Simple optical system, but....
- Challenges
 - Difficult to calibrate the absolute power reflected on the in vacuum mirror
 - Parameters of the optics, polarization...
 - Absolute calibration is based on calorimetry (power-meter),
 - Difficult to reach sub-percent level
 - Discrepancy of few percent's between national institutes
 - System stability (environment, alignment, cleanliness, ageing...)
 - Reduction of the laser power noise
 - Mirror mechanical response
- R&D plan:
 - Reach sub-percent absolute calibration
 - Install the system in (light) vacuum?

Auxiliary laser beam

ITF beam


Reflected laser beam


 $(power P_{ref})$

NIST-calibrated integrating sphere

Newtonian Calibrator (NCal)

- Basic model: rotor made of two masses
 - The non linear Newtonian force creates the signal
 - Signal at twice the rotor frequency; I/d⁴ effect
- Expected benefits
 - Signal depends mostly on the rotor geometry and position
 - Mirror mass cancels out
 - No aging effect of the signal
 - Simple interface with the ITF: could be moved from one to another
- Challenges
 - Able to rotate at few hundred 100 Hz (10k-20k RPM), for years
 - "Without" mechanical vibration or electromagnetic noise
 - Well known geometry and mass
 - Be able to be install at different location with different orientation \rightarrow support
 - Safety: no dislocation + protection in case of dislocation
- R&D plan: build (incrementally) prototypes that could reach a 0.1 % absolute calibration
 - Involve high precision mechanic, metrology, instrumentation,...

