Prospectives IN2P3, GT08

Low loss signal detection

Context

- Sensitivity of GW detector limited by quantum noise:
 - Radiation pressure noise at low frequency
 - Shot noise at high frequency
- Quantum noise can be reduced by injecting a squeezed vacuum state in the interferometer:
 - Frequency Independent Squeezing to reduce shot noise: already implemented in advanced detectors
 - Frequency Dependent Squeezing to enhance the sensitivity at all frequencies: foreseen in AdV+
- Benefit of squeezing limited by losses and signal detection noises
 → This requires:
 - Low losses optics
 - > High Quantum Efficiency photodiodes
 - Low noise photodiode electronics
- GW detectors are operating at dark fringe to minimize shot noise This makes them very sensitive to contrast defect

Input beam

Advanced Virgo sensitivity on Jan 17th, 2020 (03)

Output Mode Cleaner

- Goal: Filter the Dark Fringe to keep only the component carrying information on Differential Arm Motion → improve interferometer contrast defect
- AdV OMC made of 2 cavities of fused silica, in serie:
 - Cavity finesse ≈ 125
 - Beam propagates inside fused silica
 - Cavity length controlled to keep it at resonance of the fundamental mode

From the interferometer

24/01/2020

Losses induced by the OMC

• Internal losses:

- Scattering on the reflective surfaces

proportional to OMC finesse and to (surface roughness)²

- \rightarrow requires high quality polishing (roughness < 0.3 nm RMS for AdV OMC)
- Absorption in OMC substrate

 \rightarrow requires low absorption material (fused silica Suprasil 3001 for AdV OMC)

Absorption in surfaces coating

 \rightarrow high quality coating performed at LMA

- Mismatching losses between incident beam and OMC cavity:
 - Mode mismatch → requires a telescope
 - Misalignment
 - Polarization mismatch
- Mismatching losses between the two OMC cavities

Proposed improvements for a lower loss signal detection

- Replace the 2 OMC cavities by a single OMC cavity of higher finesse (≈1000)
 - \rightarrow Will get rid of mismatching losses between the 2 cavities
 - Must learn how to control the high finesse cavity with good precision
- Improve polishing: roughness below 0.1 nm RMS → will mitigate scattering losses
- Implement more actuators on the suspended bench optics to allow a precise mode matching and polarization tuning when the bench is in vacuum
- Implement an automatic alignment based on new quadrant sensors to correct OMC alignment drifts during interferometer operation
- Explore lower absorption materials, better coating
- Explore an evolution of the OMC design towards an empty cavity (beam propagating inside vacuum)
- Develop a lower noise preamplifier for the high quantum efficiency photodiodes
- Choice of photodiode technology to be revised in view of Einstein Telescope and new wavelengths