

ACTAR TPC

Nuclear structure through transfer reactions

Past: structure of nuclei close to stability in direct kinematics, use of magnetic spectrograph

- ☐ Good resolution (few keV)
- ☐ High beam intensity
- ☐ Stuck with stable isotopes from which a target can be made

J.E. Spencer and H.A. Enge, NIM 49, 181 (1967)

Nuclear structure through transfer reactions

Now: structure of exotic nuclei in inverse kinematics

- ☐ Study of nuclei with short half-life
- ☐ Low beam intensity
- ☐ Resolution strongly depends on target thickness

Need thick targets and excellent resolution

Nuclear structure through transfer reactions

Now: ACTIVE TARGETS

- ☐ Study of nuclei with short half-life, produced with small intensity
- ☐ Use of thick target without loss of resolution
- ☐ Detection of very low energy recoils

Active target: (Gaseous) detector in which the atoms of the gas are used as a target

 \rightarrow 1st difficulty: the choice of the gas is driven by the physics, not by its properties!

Active Target And Time Projection Chamber

- ✓ Gas-filled active target and time projection chamber
 - Gas = detector AND target
 - Vertexing = resolution similar to thin solid target
 - High effective thickness = up to 10^3 higher
- ✓ Major advantages over conventional approaches
 - Detection efficiency close to 4π
 - Detection of low energy recoils (that stop inside the target)
 - Event-by-event 3D reconstruction
 - Compact, portable and versatile detector
- ✓ Physics programs
 - Resonant scattering
 - Inelastic scattering and giant resonances
 - Transfer reactions
 - Rare and exotic decays (2p, β 2p, ...)
 - Transfer-induced fission, ...

→ 2nd difficulty: LARGE variety of experiments, involving "high energy" light particles and "low energy" heavy ions: LARGE detection dynamics required!

✓ Drift region: principle

- Transparent to particles on 4 sides
- → Wire field cage
- Homogeneous vertical drift electric field
- → Double wire field cage: 2 mm/1 mm pitch

✓ Amplification region: principle

- Bulk Micromegas (CERN PCB workshop)
- Local gain reduction via pad polarization

✓ Segmented pad plane

- Micromegas
- \rightarrow transverse multiplicity \approx electron straggling: 2x2 mm² pads
- 16384 pads with very high density: challenge!
- → Two solutions investigated

✓ Electronics: GET

GET electronics:

- 512 samples ADC readout depth x 16384 pads
- → volume sampling in 8 Mega voxel
- adjustable gain, peaking time, individual trigger: pad per pad

ACTAR TPC: Commissioning

✓ Commissioning of the 128x128 pad full detector

 $^{18}{\rm O}({\rm p,p})$ and $^{18}{\rm O}({\rm p,\alpha})$ excitation functions: $\rightarrow 3.2A$ MeV $^{18}{\rm O}$ beam in 100 mbar iC $_4{\rm H}_{10}$

Figure 7: Excitation energy of ¹⁹F from the (p,p) channel on the left and from the (p, α) channel on the right projected for $\theta_{cm} = (160 \pm 5)^{\circ}$. The black dots with statistical uncertainties are the experimental points and the red curve is the result of the R-matrix calculation convoluted with a Gaussian function that was fit the data (see text for details). Resolutions were found to be 38(3) keV FWHM and 54(9) keV FWHM, respectively.

B. Mauss, et al., submitted to NIM A

ACTAR TPC: First experiments

✓ Study of the Giant Monopole Resonance in the Ni chain (April 2019) 58,68 Ni(α,α'): $\to 49A$ MeV 58,68 Ni beams in 400 mbar He(98%) + CF₄(2%)

Courtesy B. Mauss & M. Vandebrouck

ACTAR TPC: First experiments

✓ Proton-decay branches from the 10⁺ isomer in ⁵⁴Ni (May 2019)

 54 Ni implantation – proton decay: → 10A MeV 54 Ni beam in 900 mbar Ar(95%) + CF₄(5%)

- ✓ Implantation of fragmentation beam
- ✓ Simultaneous observation of Ni track (6 MeV/pad) and proton tracks (60 keV/pad)

- ✓ 100% working pad plane: 1st deliverable (2020)
- ✓ Mask for high intensity / heavy beams
- ✓ Amplification system for pure gases
- ✓ Recirculation system for rare gases

✓ 100% working pad plane: 1st deliverable (2020)

2019 version: about 400 pads grounded

2020 version: >99.9% functional pads

- ✓ Mask for high intensity / heavy beams
- ✓ The GET preamp has a decay time constant of $\sim 50 \mu s$
 - → No way to recover the preamp saturation: simply loose the signal
- ✓ The use of micromegas creates capacitive coupling problems
 - → Possibility to correct at low rate
 - → induces (important) noise at high rate, kills the small signals if the energy deposit is too important

- ✓ Mask for high intensity / heavy beams
 - → Electrostatic mask for field screening

C. Rodriguez et al., NIM A768, 179 (2014)

mask with double wire planes

space charge density 140 pC/cm3 \rightarrow Equivalent: 10⁶ Hz of ¹³⁶Xe @ 7A MeV in 100 mbar iC₄H₁₀

Simulations: R. Revenko (GANIL)

✓ Amplification system for pure gases

✓ The micromegas gap can be adapted to "low pressure" in the TPC, e.g. down to few tenth of mbar of isobutane.

- ✓ 220 µm gap suited for low-pressure isobutane
- ✓ 128 µm gap needed for P>150 mbar

- ✓ Amplification system for pure gases
- ✓ The micromegas gap can be adapted to "low pressure" in the TPC, e.g. down to few tenth of mbar of isobutane.
- ✓ However, the gain with pure monoatomic or diatomic gases remains too small
 → Need to quench the gas:

✓ 220 µm gap better suited for "high"-pressure gas mixes

- ✓ Amplification system for pure gases
- ✓ The micromegas gap can be adapted to "low pressure" in the TPC, e.g. down to few tenth of mbar of isobutane.
- ✓ However, the gain with pure monoatomic or diatomic gases remains too small
 - → Need to quench the gas
 - → OR use a hybrid amplification system, e.g. micromegas + GEM

Yu-Lian Zhang, Chin. Phys. C38, 046001 (2014)

The research leading to these results have received funding from the European Research Council under the European Union's Seventh Framework Program (FP7/2007-2013)/ERC grant agreement n° 335593.

- ✓ Drift region
- ✓ Amplification region: principle
 - Micro Pattern Gaseous Detectors: bulk micromegas (CERN PCB workshop)
 - Operate at P = 75 mbar 1 bar: gap = 220 μ m
 - Local gain reduction via pad polarization

T. Roger - GT08

- ✓ Drift region
- ✓ Amplification region: principle
- ✓ Segmented pad plane
- ✓ Electronics
 - Very front end sparking protection circuit: ZAP boards
 - Pads equipped with GET electronics:
 - \rightarrow 512 samples ADC readout depth x 16384 pads = volume sampling in 8 Mega voxels
 - → adjustable gain, peaking time, individual trigger: pad per pad

E.C. Pollacco et al., NIM A887, 81 (2018)

- ✓ Drift region
- ✓ Amplification region: principle
- ✓ Segmented pad plane
 - Micromegas (CERN PCB WS) \rightarrow transverse multiplicity \approx electron straggling: 2x2 mm² pads
 - 16384 pads with very high density: connectics challenge!

Multi-layer PCB routing solution:
P. Gangnant/M. Blaizot-GANIL
JST Connectors, 0.5 mm pitch

FAKIR solution: J. Pibernat-CENBG

- ✓ Drift region
- ✓ Amplification region: principle
- ✓ Segmented pad plane
- ✓ Electronics
- ✓ Auxiliary detectors
 - Already equipped with Si/CsI telescopes on 1 side
 - Configurable flange design: can be adapted to many other detectors

