

Liquid argon calorimetry for a detector at a future circular e⁺e⁻ collider

Thibault Guillemin (LAPP)

Journées nationales de prospectives 2020: détecteurs et instrumentation associée

Orsay, 23-24 janvier 2020

The FCC integrated program

FCC project at CERN: 100 km tunnel

- Stage 1 (~2040-2055): **FCC-ee** (Z, W, H, tt) as first generation Higgs, electroweak and top factory at highest luminosities

- Stage 2 (~2065-2090): **FCC-hh** (~100 TeV) as natural continuation at energy frontier, with ion and ep options

Key technological challenge: 16 T dipoles

Conceptual Design Reports (machine, detector, physics) released in February 2019

- LAr calorimeter in the FCC-hh CDR
- Could LAr calorimetry work at FCC-ee?
- Recent interest from IN2P3 groups

FCC-hh calorimeter

FCC-hh detector

ATLAS-like calorimeter, with higher granularity

- ECal, HCal endcap and forward calorimeter (\geq 30 X₀): LAr / Pb (Cu)
- HCal barrel and extended barrel ($\geq 10 \lambda$): scintillating tiles / Fe(+Pb) with SiPM

FCC-hh electromagnetic calorimeter

Much finer lateral and longitudinal granularity than ATLAS (x10)

- 8 longitudinal layers
- ΔηxΔφ~0.01x0.01 (0.0025x0.02 for first layer)
- ➔ 2.5 M readout channels

➔ Possible thanks to straight multilayer electrodes

(PCB, 7 layers, 1.2 mm thick)

Design and prototype

LAr calorimeter in the FCC-hh CDR

Could LAr calorimetry work at FCC-ee?

From P.D.G.

Liquid Ar/Pb (straight PCB)	22 X ₀	a%/√E⊕c%⊕b/E	2025?
Liquid Ar/Pb accordion (ATLAS)	$25X_0$	$10\%/\sqrt{E} \oplus 0.4\% \oplus 0.3/E$	1996
Liquid Ar/depl. U (DØ)	$20.5X_0$	$16\%/\sqrt{E} \oplus 0.3\% \oplus 0.3/E$	1993
Liquid Ar/Pb (H1)	$20 - 30X_0$	$12\%/\sqrt{E}\oplus 1\%$	1998
Liquid Ar/Pb (SLD)	$21X_0$	$8\%/\sqrt{E}$	1993
Liquid Ar/Pb (NA31)	$27X_0$	$7.5\%/\sqrt{E} \oplus 0.5\% \oplus 0.1/E$	1988

Energy coverage <200 GeV \rightarrow 22 X₀ and 7 λ

e/γ energy $\delta E/E ≤ 10\%/\sqrt{E}$ [GeV] Photons down to 300 MeV (low noise term)

Jet energy $\delta E/E ≤ 30\%/\sqrt{E}$ [GeV] p-flow Particle identification Excellent e/γ ID

Radiation hardness Loose

Time stability and acceptance knowledge

→ Normalization to 10⁻⁵ level

Physics event rates up to 100 kHZ

Cost

EM resolution for FCC-ee

- Dimension
 22 X₀ → ~60 cm radial space required
 With W instead of Pb: reduced to 45 cm
- EM resolution

- Sampling term: $8\%/\sqrt{E}$ achieved in FCC-hh simulation (in the no-pileup case)

- Noise term

300 MeV in FCC-hh simulation at cluster level
Possible to reduce the electronics noise:
→ Adjusting cluster size
→ Increasing the shaping time
(up to 1 µs w.r.t. 45 ns used)

- Constant term <1% to not degrade in the 100-200 GeV range (ATLAS 0.7%)

Jet resolution for FCC-ee

- Performance estimated using the reference FCC-hh HCAL
 Pion resolution:
 Reference: 48%/√E
 DNN: 37%/√E (calorimeter only, no electronics noise)
- Particle flow will allow to improve further the jet resolution → Work started to implement p-flow in FCCSW

FCC-hh simulation (Geant4) EMB+HB 100 GeV π^- @ $\eta = 0.36$, $\langle \mu \rangle = 0$, topo-cluster

LAr calorimeter in the FCC-hh CDR

- Could LAr calorimetry work at FCC-ee?
- Recent interest from IN2P3 groups

Expression of interest for AIDA++

R&D for future high-granularity noble liquid calorimetry

- Project led by Martin Aleksa (CERN)
- 6 (4) institutes (in France) participating

Participating institute / company	Main contact person	E-mail
CERN	Martin Aleksa	martin.aleksa@cern.ch
LAL Orsay (IN2P3)	Nicolas Morange	nicolas.morange@cern.ch
OMEGA (IN2P3)	Christophe de la Taille	taille@in2p3.fr
Prague Charles University	Jana Faltova	jana.faltova@cern.ch
LAPP Annecy (IN2P3)	Thibault Guillemin	thibault.guillemin@cern.ch
CPPM Marseille (IN2P3)	Emmanuel Monnier	monnier@in2p3.fr

The following project is proposed:

- 2020-2021: Simulation and design of a multi-layer read-out + HV electrode (PCB) for a possible noble-liquid calorimeter.
- 2022-2023: Production of up to three prototype electrode PCBs
- 2024-2025: Electrical measurements of electrodes (attenuation, capacitances, cross-talk) at room temperature.
- 2024-2025: Measurements including read-out electronics (preamplifier, shaper ASIC) at room temperature (and possibly in cryogenic temperatures).

Discussions about the contributions are starting: kick-off meeting in February.

ANR proposal just submitted: GRANULAR

High granularity liquid argon calorimetry for a detector at a future circular electron-positron collider

- Funding requested: 600 k€ (two 3-year postdoctorants + 100 k€ material)
- A way for french members to get organized to contribute

Work packages	LAPP	LAL	OMEGA
Design optimization for FCC-ee	х	х	
Performance assessment from simulation	х	x	
PCB electrode design		х	
Outside/inside-cryostat electronics (ASICS)			x
Engineering/mechanics for a small- scale calorimeter module	х		
Laboratory and test beam measurements	x	x	

• Liquid Argon calorimetry being explored for the FCC-ee case

- → Interest of several IN2P3 researchers from different institutes
- Expression of Interest for AIDA++ signed
- ANR GRANULAR submitted
- → Plan to start simulation work now

Other options to be investigated to optimize specifically for the FCC-ee case:
 W absorber, LKr as active material, alternative geometry, LAr for HCAL, etc.

N.B: plan to go towards proto-collaborations by 2026, before moving to a TDR phase.

ATLAS granularity

From M. Aleksa

Achieving high granularity

From M. Aleksa

Towards a first simulated design for FCC-ee

50

E_{beam} [GeV]

40