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Outline

The fluid paradigm in heavy-ion collisions

final-state momentum anisotropies from
initial-state spatial anisotropies

Initial eccentricities from the Glasma

how to calculate the initial spatial anisotropies:
from the energy momentum tensor and its fluctuations

A new picture of initial-state fluctuations
ab-initio description free from the Monte Carlo Glauber Ansatz
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Two ingredients needed for flow

flow is an initial spatial anisotropy turned into a momentum
anisotropy by the hydrodynamic expansion of the medium

final-state v — K 8 initial-state
«— —_— _—
n n=n harmonic

harmonic

Vv, has two components: a geometric one
and one due to fluctuations (the geometric
component vanishes in central collisions)
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The eccentricity harmonics

How do we calculate the initial anisotropy?
[Teaney, Yan 1010.1876]

n
o fs S ,O(S) density field
67’1, —_ ‘]" |S|n (S) in one event
P impact parameter
s \ p(s)
S = T+ 1y 09
Origin of anisotropy: i 0.0
n=2
elliptic flow —» geometry + fluctuations 5.0
[PHOBOS Collaboration nucl-ex/0610037] I R S
n=3 BRaRT _5 0
triangular flow —» fluctuations only X [fm]

[Alver, Roland 1003.0194]

The theoretical input is a model for p(s) and its fluctuations.




Relevant averaged quantities

« averaged quantities relevant for experiments:

geometry + fluctuations «— (v%} = V9{2} = Kyee{2}

geometry

</2<U§>2 - <U§> = vo{d} = Kpea{d} ——  onyy

fluctuations only =~ «— <v§> = v3{2} = K3e3{2}



Relevant averaged quantities

« averaged quantities relevant for experiments:

geometry + fluctuations «— <v§> = 1v5{2} = Koeo{2}

geometry

202)2 - (03) = 02{4) = moea {4} —— “only

fluctuations only =~ «— <U§> = v3{2} = K3e3{2}

* a 10-year old prescription to compute p(s):

- start with the ‘Glauber Monte Carlo Ansatz’
(sample nucleons according to the Woods-Saxon distribution)

- propose some mechanism (more or less motivated by physics) to convert
nucleons/partons into a smooth map of energy density (e.g. through interactions)

instead, can we describe experimental data using the
correlation functions of the primordial energy density as (only) input ?



Our strategy

we follow Blaizot, Bronjowski, Ollitrault (2014)

p(s) =|(p(s))|+dp(s), (p(s)) > dp(s)

Connected 2-point function: §(s,, ) = (3p(s1)p(s2)) = (plsa)p(sa)) — (plsa))(p(ss)
_ Jos"p(s)

Perturbative expansion of the anisotropy: &»n = e
Js Isl"p(s)

To first nontrivial order: . C N2 2
. 2 L B (s1)" (s2)” S(sy,82)
fluctuations o¢° = 72
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r.m.s. spatial anisotropy can be mapped to experimental data
we need the 1-point and 2-point correlators



What is needed ?

| (p(s))

The average density.

X [fm] X [fm]

e The fluctuations around the average.

S(s1,82) = (p(s1)p(s2)) — (p(s1)){p(s2))

r r
in particular the integral  £(s) = /S (S + —,8 — —)
r

2 2

—— compute the 1-point and 2-point energy correlators



Initial eccentricities
from the Glasma
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Albacete, Guerrero-Rodriguez, CM, JHEP 1901 (2019) 073



What is the Glasma ?

the initial strong color field created after the collision
5. Individual hadrons s (5
<

N

freeze out

4. Hadron gas
cooling with expansion |
<

3. Quark Gluon Plasma
ther n,
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The collision of two CGCs

 the initial condition for the time evolution in heavy-ion collisions

before the collision:

< VT =88 py () + 0 () py (x,)
o~ & ,f:;_ p1 ~ 1/g p2 ~ 1/g
- the distributions of p contain the small-x
7 T evolution of the nuclear wave functions

|(1>9f31[,01]|2 |¢:c2[/92]|2

p(z1) = —V?a(z,) denotes the color charge which generates the field
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p(z1) = —V?a(z,) denotes the color charge which generates the field

 after the collision
the gluon field is a complicated function of the two classical color sources

the field decays, once it is no longer strong (classical)
a particle description is again appropriate



“strong-field” QCD factorization

solve Yang-Mills equations
[Dp, F**1 = J"  —— Aulp1, p2l

this is done numerically (it can be
done analytically in the p+A case)

A, = pure gauge 1 A, = pure gauge 2
express observables in terms of the field

determine O[.A ], in general a
non-linear function of the sources

1
e.g. for this talk 1M = Zg’“/FAUFAU — F“AF)’\/



“strong-field” QCD factorization

« solve Yang-Mills equations
[Dp, F**1 = J"  —— Aulp1, p2l

this is done numerically (it can be
done analytically in the p+A case)

A, = pure gauge 1 A, = pure gauge 2
» express observables in terms of the field

determine O[.A ], in general a
non-linear function of the sources

1
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« perform the averages over the color charge densities
(0) = [ Dp1Dp2|Pay (1121 a5 0] 2OLA]

we shall use the MV model for | Pz, [p1] I and | D5 [02] 2

—— each nucleus is characterized by its saturation scale Q? (s) o< T'(s)



Relevant features of S(s4,s,)

1.0

system size
~ 10 fm
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rv-energy correlator (rescaled)
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energyZenergy correlator (rescaled)

(p(s)) = Siggczi@ 2 (s)

£(s) = 5T 02 ()02 (s) ( 4(s)In (1 + Qig“) +Qp(s)In (1 + Q’Q“(S)))
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Results and
data comparisons

Giacalone, Guerrero-Rodriguez, Luzum, CM and Ollitrault, PRC 100 (2019) 024905
Gelis, Giacalone, Guerrero-Rodriguez, CM and Ollitrault, arXiv:1907.10948



Comparison to MC Glauber models
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IP Glasma ~ MC Glauber, its fluctuations are dominated by the nucleon position sampling
we only have fluctuations of the local color charge



Comparison to data

- v,{4} simply probes the average geometry, we use it to fix K,
- then, with a reasonable Qs value, we can reproduce the fluctuations in v,{2}
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- the response coefficients are compatible with state-of-the-art hydro simulations
- Qs(LHC) > Qs(RHIC) explains more eccentricity fluctuations at RHIC



Triangular flow
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we solve a long-standing problem of hydro-to-data comparisons:
the ratio v,{2} / v4{2} grows quickly with centrality



Energy dependence

fluctuations produce the splitting between the v,{4} and v.{2}
data indicate that they are larger at RHIC energies
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this is compatible with what we expect
from QCD evolution towards high energies

Q1) (f)

Cgs($2) :7§T

by contrast, MC Glauber-type calculations
do not make any specific predictions
for the v,{4} / v,{2} ratio



Conclusions
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ab-initio description free from the Monte Carlo Glauber Ansatz:

* No random sampling of nucleons
* No ad hoc prescriptions about the deposition of energy

* Non perturbative physics only through the mass parameter




